Araştırma Makalesi


DOI :10.26650/ijegeo.1508429   IUP :10.26650/ijegeo.1508429    Tam Metin (PDF)

Determining the Regeneration Dynamics of Burned Forest Areas Using Satellite Images and Climate Parameters

Dilek Küçük MatçıUğur AvdanMurat KurucaDeniz Hakan DurmuşSümeyye Aktaş

Forest fires significantly impact ecosystems by reducing biological diversity and sustainability. Observing the regeneration process of burned areas and identifying factors influencing this process, monitoring the regeneration status, determining the spread of invasive species, and understanding the impact on wildlife and its evolution contribute to assessing the consequences of this disaster. However, on-site monitoring of burned areas is a time-consuming and challenging process. Therefore, in this study, the regeneration processes of burned forest areas and the factors influencing these processes were investigated using data from remote sensing systems. In this context, the regeneration processes of areas affected by the forest fire in Antalya Kumluca and Adrasan in 2016 were examined. Landsat-8 satellite images of the study areas were obtained with the assistance of Google Earth Engine (GEE). NBR (Normalized Burn Ratio) showing the severity of the burn and NDVI (Normalized Difference Vegetation Index) indicating the vitality status of the forest were calculated using these images. In addition, parameters such as wind speed, soil moisture, precipitation amount, Land Surface Temperature (LST), and air temperature were obtained from data provided by remote sensing systems through GEE. Multiple regression analysis was conducted to identify the parameters affecting the regeneration process.

Anahtar Kelimeler: Forest FiresNDVINBRRegeneration Process

PDF Görünüm

Referanslar

  • Aalen, O. O. (1989). A linear regression model for the analysis of life times. Statistics in medicine, 8(8), 907925. google scholar
  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific data, 5(1), 1-12. google scholar
  • Aguilar, A. (2005). Remote sensing of forest regeneration in highland tropical forests. GIScience & remote sensing, 42(1), 66-79. google scholar
  • Akça, Ş. (2023). Hava Lidar Verisi Üzerinde K-Ortalamalar ve Bulanık C-Ortalama ile Bina Çıkarımı. Türkiye Lidar Dergisi, 5(2), 45-51. google scholar
  • Akosman, E. N., Makineci, H. B. Sentinel-2A Verileriyle Trabzon İli 2019-2020 Yılları Arasında Ortaya Çıkan Sınıflandırma Farklarının Çeşitli Algoritmalarla Değerlendirilmesi. Türkiye Uzaktan Algılama Dergisi, 5(2), 78-88. google scholar
  • Aliyazıcıoğlu, Ş., Öztürk, K. F., Günen, M. A. (2023). Analysis of Gümüşhane-Trabzon highway slope static and dynamic behavior using point cloud data. Advanced Lidar, 3(2), 70-75. google scholar
  • Avdan, U., Kucuk Matci, D., Kaplan, G., Yigit Avdan, Z., Erdem, F., Demirtas, I. Mızık, E.T. . (2021). Evaluating the Atmospheric Correction Impact on Landsat 8 and Sentinel-2 Data for Soil Salinity Determination. Geodetski list, 75(3), 255-240. google scholar
  • Basara, A. C., Tabar, M. E., Gulsun, S., Sisman, Y. (2022). Monitoring urban sprawl in Atakum district using CORINE data. Advanced Geomatics, 2(2), 4956. google scholar
  • Başaran, N., MATCI, D. K., Avdan, U. (2022). Using multiple linear regression to analyze changes in forest area: the case study of Akdeniz Region. International Journal of Engineering and Geosciences, 7(3), 247263. google scholar
  • Cai, W., Yang, J., Liu, Z., Hu, Y., Weisberg, P. J. (2013). Post-fire tree recruitment of a boreal larch forest in Northeast China. Forest Ecology and Management, 307, 20-29. google scholar
  • Capolupo, A., Monterisi, C., Tarantino, E. (2020). Landsat Images Classification Algorithm (LICA) to automatically extract land cover information in Google Earth Engine environment. Remote Sensing, 12(7), 1201. google scholar
  • Chu, T., Guo, X., Takeda, K. (2016). Remote sensing approach to detect post-fire vegetation regrowth in Siberian boreal larch forest. Ecological Indicators, 62, 32-46. google scholar
  • Çömert, R., Matcı, D. K., Emir, H., Avdan, U. (2017). Nesne Tabanlı Sınıflandırma ile Yanmış Orman Alanlarının Tespiti. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(4), 27-34. google scholar
  • Çömert, R., Matci Küçük, D., Avdan, U. (2019). Object Based Burned Area Mapping With Random Forest Algorithm. International Journal ofEngineering and Geosciences, 4(2), 78-87. google scholar
  • Diaz-Delgado, R., Lloret, F., Pons, X. (2003). Influence of fire severity on plant regeneration by means of remote sensing imagery. International Journal of Remote Sensing, 24(8), 1751-1763. google scholar
  • Digavinti, J., Manikiam, B. (2021). Satellite monitoring of forest fire impact and regeneration using NDVI and LST. Journal of Applied Remote Sensing, 15(4), 042412-042412. google scholar
  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., . . . Hoell, A. (2015). The climate hazards infrared precipitation with stations— a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21. google scholar
  • Gilbert, K. M., Shi, Y. (2023). Land use/land cover change detection and prediction for sustainable urban land management in Kigali City, Rwanda. Advanced Land Management, 3(2), 62-75. google scholar
  • Gilbert, K. M., Shi, Y. (2024). Using GlobeLand30 data and cellular automata modeling to predict urban expansion and sprawl in Kigali City. Advanced Remote Sensing, 4(1), 46-57. google scholar
  • Güngör, R., Yilmaz, O. S., Sanli, F. B., Ates, A. M. (2022). Investigation of spatial change in Lake Surface with Google Earth Engine: Example of Marmara Lake. Advanced Remote Sensing, 2(1), 8-15. google scholar
  • Johnstone, J. F., Rupp, T. S., Olson, M., Verbyla, D. (2011). Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests. Landscape Ecology, 26, 487500. google scholar
  • Kazemi Garajeh, M., Haji, F., Tohidfar, M., Sadeqi, A., Ahmadi, R., Kariminejad, N. (2024). Spatiotemporal monitoring of climate change impacts on water resources using an integrated approach of remote sensing and Google Earth Engine. Scientific reports, 14(1), 5469. google scholar
  • Keeley, J. E., Pausas, J. G. (2022). Evolutionary ecology of fire. Annual Review of Ecology, Evolution, and Systematics, 53, 203-225. google scholar
  • Kucuk Matci, D. (2022). Monitoring and estimating spatial-temporary land use changes of the Aegean region with remotely sensed data. Environmental Science and Pollution Research, 1-10. google scholar
  • KumlucaBelediyesi. (2019). COĞRAFYA. google scholar
  • Kuplich, T. M. (2006). Classifying regenerating forest stages in Amazonia using remotely sensed images and a neural network. Forest Ecology and Management, 234(1-3), 1-9. google scholar
  • Lemesios, I., Petropoulos, G. P. (2024). Vegetation regeneration dynamics of a natural mediterranean ecosystem following a wildfire exploiting the LANDSAT archive, google earth engine and geospatial analysis techniques. Remote Sensing Applications: Society and Environment, 34, 101153. google scholar
  • Lopes, L. F., Dias, F. S., Fernandes, P. M., Acacio, V. (2024). A remote sensing assessment of oak forest recovery after postfire restoration. European Journal of Forest Research, 143(3), 1001-1014. google scholar
  • Maki neci, H. B., Arıkan, D. (2024). Seyfe lake seasonal drought analysis for the winter and summer periods between 2017 and 2022. Remote Sensing Applications: Society and Environment, 34, 101172. google scholar
  • Mallinis, G., Mitsopoulos, I., Chrysafi, I. (2018). Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GIScience & remote sensing, 55(1), 1-18. google scholar
  • Matarira, D., Mutanga, O., Naidu, M. (2022). Google Earth Engine for Informal Settlement Mapping: A Random Forest Classification Using Spectral and Textural Information. Remote Sensing, 14(20), 5130. google scholar
  • Matci, D. K., Avdan, U. (2020). Comparative analysis of unsupervised classification methods for mapping burned forest areas. Arabian Journal of Geosciences, 13(15), 1-13. google scholar
  • Munoz Sabater, J. (2019). ERA5-Land monthly averaged data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS)[data set]. In. google scholar
  • Mutanga, O., Kumar, L. (2019). Google earth engine applications. In: Multidisciplinary Digital Publishing Institute. google scholar
  • Ocer, N. E., Kaplan, G., Erdem, F., Kucuk Matci, D., Avdan, U. (2020). Tree extraction from multi-scale UAV images using Mask R-CNN with FPN. Remote Sensing Letters, 11(9), 847-856. google scholar
  • OGM. (2017). Orman İstatistikleri. In: Yayin. google scholar
  • Petrie, M., Wildeman, A., Bradford, J. B., Hubbard, R., Lauenroth, W. (2016). A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration. Forest Ecology and Management, 361, 328-338. google scholar
  • Polat, N., Memduhoğlu, A., Akça, Ş. (2022). Determining the change in burnt forest areas with UAV: The example of Osmanbey campus. Advanced UAV, 2(1), 11-16. google scholar
  • Rasul, A. O., Hameed, H. M., Ibrahim, G. R. F. (2021). Dramatically increase of built-up area in Iraq during the last four decades. Advanced Remote Sensing, 1(1), 1-9. google scholar
  • Roy, D. P., Boschetti, L., Trigg, S. N. (2006). Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Geoscience and Remote Sensing Letters, 3(1), 112-116. google scholar
  • Shafiq, M., Mahmood, S. (2022). Spatial assessment of forest cover change in Azad Kashmir, Pakistan. Advanced GIS, 2(2), 62-69. google scholar
  • Şimşek, F. F. (2024). Optik ve radar görüntüleri ile aşiri gradyan artirma algoritmasi kullanilarak tarimsal ürün desen tespiti. Geomatik, 9(1), 54-68. google scholar
  • Stankova, N., Avetisyan, D. (2024). Postfire Forest Regrowth Algorithm Using Tasseled-Cap-Retrieved Indices. Remote Sensing, 16(3), 597. google scholar
  • Tucker, C. J. (1978). Red and photographic infrared linear combinations for monitoring vegetation. google scholar
  • USGS. (2015). Landsat 8 band designations. google scholar
  • Yalçin, M., Boz, İ. (2007). Kumluca İlçesinde Seralarda Üreticilerin Kullandiklari Bilgi Kaynaklari. Bahçe, 36(1), 1-10. google scholar
  • Yiğit, A. Y., Uysal, M. (2020). Automatic road detection from orthophoto images. Mersin Photogrammetry Journal, 2(1), 10-17. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Küçük Matçı, D., Avdan, U., Kuruca, M., Durmuş, D.H., & Aktaş, S. (2024). Determining the Regeneration Dynamics of Burned Forest Areas Using Satellite Images and Climate Parameters. International Journal of Environment and Geoinformatics, 11(4), 70-77. https://doi.org/10.26650/ijegeo.1508429


AMA

Küçük Matçı D, Avdan U, Kuruca M, Durmuş D H, Aktaş S. Determining the Regeneration Dynamics of Burned Forest Areas Using Satellite Images and Climate Parameters. International Journal of Environment and Geoinformatics. 2024;11(4):70-77. https://doi.org/10.26650/ijegeo.1508429


ABNT

Küçük Matçı, D.; Avdan, U.; Kuruca, M.; Durmuş, D.H.; Aktaş, S. Determining the Regeneration Dynamics of Burned Forest Areas Using Satellite Images and Climate Parameters. International Journal of Environment and Geoinformatics, [Publisher Location], v. 11, n. 4, p. 70-77, 2024.


Chicago: Author-Date Style

Küçük Matçı, Dilek, and Uğur Avdan and Murat Kuruca and Deniz Hakan Durmuş and Sümeyye Aktaş. 2024. “Determining the Regeneration Dynamics of Burned Forest Areas Using Satellite Images and Climate Parameters.” International Journal of Environment and Geoinformatics 11, no. 4: 70-77. https://doi.org/10.26650/ijegeo.1508429


Chicago: Humanities Style

Küçük Matçı, Dilek, and Uğur Avdan and Murat Kuruca and Deniz Hakan Durmuş and Sümeyye Aktaş. Determining the Regeneration Dynamics of Burned Forest Areas Using Satellite Images and Climate Parameters.” International Journal of Environment and Geoinformatics 11, no. 4 (Dec. 2024): 70-77. https://doi.org/10.26650/ijegeo.1508429


Harvard: Australian Style

Küçük Matçı, D & Avdan, U & Kuruca, M & Durmuş, DH & Aktaş, S 2024, 'Determining the Regeneration Dynamics of Burned Forest Areas Using Satellite Images and Climate Parameters', International Journal of Environment and Geoinformatics, vol. 11, no. 4, pp. 70-77, viewed 23 Dec. 2024, https://doi.org/10.26650/ijegeo.1508429


Harvard: Author-Date Style

Küçük Matçı, D. and Avdan, U. and Kuruca, M. and Durmuş, D.H. and Aktaş, S. (2024) ‘Determining the Regeneration Dynamics of Burned Forest Areas Using Satellite Images and Climate Parameters’, International Journal of Environment and Geoinformatics, 11(4), pp. 70-77. https://doi.org/10.26650/ijegeo.1508429 (23 Dec. 2024).


MLA

Küçük Matçı, Dilek, and Uğur Avdan and Murat Kuruca and Deniz Hakan Durmuş and Sümeyye Aktaş. Determining the Regeneration Dynamics of Burned Forest Areas Using Satellite Images and Climate Parameters.” International Journal of Environment and Geoinformatics, vol. 11, no. 4, 2024, pp. 70-77. [Database Container], https://doi.org/10.26650/ijegeo.1508429


Vancouver

Küçük Matçı D, Avdan U, Kuruca M, Durmuş DH, Aktaş S. Determining the Regeneration Dynamics of Burned Forest Areas Using Satellite Images and Climate Parameters. International Journal of Environment and Geoinformatics [Internet]. 23 Dec. 2024 [cited 23 Dec. 2024];11(4):70-77. Available from: https://doi.org/10.26650/ijegeo.1508429 doi: 10.26650/ijegeo.1508429


ISNAD

Küçük Matçı, Dilek - Avdan, Uğur - Kuruca, Murat - Durmuş, DenizHakan - Aktaş, Sümeyye. Determining the Regeneration Dynamics of Burned Forest Areas Using Satellite Images and Climate Parameters”. International Journal of Environment and Geoinformatics 11/4 (Dec. 2024): 70-77. https://doi.org/10.26650/ijegeo.1508429



ZAMAN ÇİZELGESİ


Gönderim01.07.2024
Kabul18.12.2024
Çevrimiçi Yayınlanma20.12.2024

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.