Araştırma Makalesi


DOI :10.30897/ijegeo.1465671   IUP :10.30897/ijegeo.1465671    Tam Metin (PDF)

Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India

Ranga Rao VelamalaPawan Kumar Pant

Ascertaining and mapping soil nutrient data is crucial for governments to maintain soil health on farmlands. As part of the soil health card project, a total of 329 geo-referenced soil samples were collected from Thaticherla village, Anantapur mandal, Andhra Pradesh, India. These samples were analyzed for various soil properties such as soil pH, electrical conductivity (EC), organic carbon (OC), available nitrogen (N), available phosphorus (P), available potassium (K), available sulphur (S), DTPA extractable micronutrients (Fe, Mn, Zn, Cu), and hot water-soluble boron (B) at a depth of 0 to 15 cm. The results showed high variability (>35%) in coefficients of variation in Cu, EC, Zn, and B. The findings indicated positive correlation between Zn and Mn; N and OC; and OC and Zn. The data underwent logarithmic and Box-Cox transformations to achieve normalization. The ordinary kriging method was employed to analyze the spatial variability. The findings revealed that exponential model was appropriate for B, Fe, Mn, Zn, and OC; Gaussian for K; JBessel for N; K-Bessel for Cu, P, and S; stable for EC and rational quadratic for pH, respectively. The analysis showed a strong to weak spatial dependency. In the study area, the spatial variability maps exhibited deficiencies of 97%, 96% and 40% for N, OC and Zn, respectively. Therefore, it is urgent to apply suitable manures and fertilizers in the study area to address these issues. The study area exhibited significant variation in spatial patterns, emphasizing the importance of implementing field-specific plans for soil health and environmental management.


PDF Görünüm

Referanslar

  • Abdel-Mawgoud, A.M.R., El-Bassiouny, A.M., Ghoname, A., Abou-Hussein, S.D. (2011). Foliar application of amino acids and micronutrients enhance performance of green bean crop under newly reclaimed land conditions. Australian Journal of Basic and Applied Sciences, 5(6), 51-55. google scholar
  • Abdu, A., Laekemariam, F., Gidago, G., Kebede, A., Getaneh, L. (2023). Variability analysis of soil properties, mapping, and crop test responses in Southern Ethiopia. Heliyon, 9(3), e14013. doi.org/10.1016/j.heliyon.2023.e14013 google scholar
  • Arora, C.L. (2002). Analysis of soil, plant and fertilizer. In: Fundamentals of soil science Published by Indian Society of Soil Science, pp 548 google scholar
  • Arunachalam, P., Kannan, P., Prabukumar, G., and Govindaraj, M. (2013). Zinc deficiency in Indian soils with special focus to enrich zinc in peanut. African Journal of Agricultural Research, 8(50), 6681-6688. doi. org/10.5897/AJARx12.015 google scholar
  • Asar, Ö., Ilk, O., Dag, O. (2017). Estimating Box-Cox Power Transformation Parameter Via Goodness-of-Fit Tests. Communications in Statistics - Simulation and Computation, 46(1), 91-105. doi.org/10.1080/03610918.2014.957839 google scholar
  • Barnett, V., Lewis, T. (1994). Outliers in Statistical Data, third ed. Wiley, New York. google scholar
  • Behera, S.K., Mathur, R.K., Shukla, A.K., Suresh, K., Prakash, C. (2018). Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. CATENA, 165, 251259. doi. org/10.1016/j.CATENA.2018.02.008 google scholar
  • Behera, S.K., Shukla, A.K. (2015). Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. LandDegradation andDevelopment, 26(1), 7179. doi. org/10.1002/ldr.2306 google scholar
  • Behera, S.K., Shukla, A.K., Pachauri, S.P., Shukla, V., Sikaniya, Y., Srivastava, P.C. (2023). Spatio-temporal variability of available sulphur and micronutrients (Zn, Fe, Cu, Mn, B and Mo) in soils of a hilly region of northern India. CATENA, 226, 107082, doi.org/10.1016/j.CATENA.2023.107082 google scholar
  • Behera, S.K., Shukla, A.K., Prakash, C., Tripathi, A., Kumar, A., Trivedi, V. (2021). Establishing management zones of soil Sulphur and micronutrients for sustainable crop production. Land Degradation and Development, 32(13), 3614-3625. doi.org/10.1002/ldr.3698 google scholar
  • Behera, S.K., Singh, M.V., Singh, K.N., Todwal, S. (2011). Distribution variability of total and extractable zinc in cultivated acid soils of India and their relationship with some selected soil properties. Geoderma, 162(3-4), 242-250. doi.org/10.1016/j.geoderma.2011.01.016 google scholar
  • Bhunia, G.S., Pravat, K.S., Chattopadhyay, R. (2018). Assessment of spatial variability of soil properties using geostatistical approach of lateritic soil (West Bengal India). Annals of Agrarian Science, 16(4), 436-443. doi. org/10.1016/j.aasci.2018.06.003 google scholar
  • Bogunovic, I., Pereira, P., Brevik, E.C. (2017b). Spatial distribution of soil chemical properties in an organic farm in Croatia. Science of the Total Environment, 584-585, 535-545. http://dx.doi.org/10.1016/j.scitotenv.2017.01.062 google scholar
  • Bogunovic, I., Trevisani, S., Seput, M., Juzbasic, D., Durdevic, B. (2017a). Short-range and regional spatial variability of soil chemical properties in an agro-ecosystem in eastern Croatia. CATENA, 154, 50-62. http://dx.doi.org/10.1016/j.CATENA.2017.02.018 google scholar
  • Box, G.E.P., Cox, D.R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-252. doi. org/10.1111/j.2517-6161.1964.tb00553.x google scholar
  • Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E., (1994). Field scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501-1511. doi. org/10.2136/sssaj1994.03615995005800050033x google scholar
  • Chan, Y. (2008). Increasing soil organic carbon of agricultural land. Primefacts, 735, 1-6 google scholar
  • Chatterjee, S., Santra, P., Majumdar, K., Ghosh, D., Das, I., Sanyal, S.K. (2015). Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal, India. Environmental Monitoring and Assessment, 187, 183. doi. org/10.1007/s10661-015-4414-9 google scholar
  • Cressie, N.A.C. (1993). Statistics for spatial data. Revised edition. John Wiley: New York, p. 900. doi. org/10.1002/9781119115151.ch1 google scholar
  • Das, B.S., Wani, S.P., Benbi, D.K., Muddu, S., Bhattacharyya, T., Mandal, B., Santra, P., Chakraborty, D., Bhattacharyya, R., Basak, N., Reddy, N.N. (2022). Soil health and its relationship with food security and human health to meet the sustainable development goals in India, Soil Security, 8, 100071, doi.org/10.1016/j.soisec.2022.100071 google scholar
  • Denton, O.A., Aduramigba-Modupe, V.O., Ojo, A.O., Adeoyolanu, O.D., Are, K.S., Adelana, A.O., Oke, A.O. (2017). Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS). Cogent Food Agriculture, 3(1),1-12. doi. org/10.1080/23311932.2017.1279366 google scholar
  • DES (2019). Hand Book of Statistics, Ananthapuramu District, Government of Andhra Pradesh, Compiled and Published by Chief Planning Officer, Ananthapuramu District, 410 p. google scholar
  • Dimkpa, C.O., Bindraban, P.S. (2016). Fortification of micronutrients for efficient agronomic production: a review. Agronomy for Sustainable Development, 36, 1-26. doi. org/10.1007/s13593-015-0346-6 google scholar
  • Eljebri, S., Mounir, M., Faroukh, A.T. (2019). Application of geostatistical methods for the spatial distribution of soils in the irrigated plain of Doukkala, Morocco. Modeling Earth Systems and Environment, 5, 669-687. doi. org/10.1007/s40808-018-0558-2 google scholar
  • Esetlili, M. T., Bektas Balcik, F., Balik Sanli, F., Kalkan, K., et al. (2018). Comparison of Object and Pixel-Based Classifications for Mapping Crops Using Rapideye Imagery: A Case Study of Menemen Plain, Turkey. International Journal of Environment and Geoinformatics, 5(2), 231-243. doi.org/10.30897/ijegeo.442002 google scholar
  • ESRI (2001). Using ArcGIS™ Geostatistical Analyst, google scholar
  • ESRI (2023). Cross Validation using Geostatistical Analyst Fitzpatrick, I.C., Millner, N., Ginn, F. (2022). Governing the soil: natural farming and bionationalism in India. Agriculture and Human Values, 39, 1391-1406. doi. org/10.1007/s10460-022-10327-0 google scholar
  • Foroughifar, H., Jafarzadeh, A.A., Torabi, H., Pakpour, A., Miransari, M. (2013). Using Geostatistics and Geographic Information System Techniques to Characterize Spatial Variability of Soil Properties, Including Micronutrients. Communications in Soil Science and Plant Analysis, 44(8), 1273-1281. doi. org/10.1080/00103624.2012.758279 google scholar
  • Fu, W., Tunney, H., Zhang, C. (2010). Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil and Tillage Research, 106(2), 185-193. doi. org/10.1016/j.still.2009.12.001 google scholar
  • Fu, W., Zhao, K., Jiang, P., Ye, Z., Tunney, H., Zhang, C. (2013). Field-scale variability of soil test phosphorus and other nutrients in grasslands under long-term agricultural managements. Soil Research, 51(6), 503512. doi. org/10.1071/SR13027 google scholar
  • Gökmen, V., Sürücü, A., Budak, M., Bilgili, A.V. (2023). Modeling and mapping the spatial variability of soil micronutrients in the Tigris basin. Journal of King Saud University - Science, 35(6), 102724, doi. org/10.1016/j.jksus.2023.102724 google scholar
  • Goovaerts, P., (1999). Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89 (1-2), 145. doi. org/10.1016/S0016-7061(98)00078-0 google scholar
  • Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., Nriagu, J. (2005). Geostatistical modeling of the spatial variability of arsenic in groundwater of Southeast Michigan. Water Resources Research, 41(7), 1-19. doi. org/10.1029/2004WR003705 google scholar
  • Gorji, T., Yıldırım, A., Sertel, E., Tanık, A. (2019). Remote sensing approaches and mapping methods for monitoring soil salinity under different climate regimes. International Journal of Environment and Geoinformatics, 6(1), 33-49. doi.org/10.30897/ijegeo.500452 google scholar
  • Gupta, V.C. (1967). A simplified method for determining hot water-soluble boron in podzol soils. Soil Science, 103, 111-112. google scholar
  • Hanway, J.J., Heidel, H. (1952). Soil analysis methods as used in Iowa state college of soil testing laboratory. Iowa State College of Agriculture Bulletin, 57, 1-31. google scholar
  • Hegde, R., Bardhan, G., Niranjana, K.V., Bhaskar, B.P., Singh, S.K. (2019). Spatial variability and mapping of selected soil properties in Kaligaudanahalli Microwatershed, Gundlupet Taluk, Chamarajanagar District, under hot semi-arid agrosubregion of Central Karnataka Plateau, India. SN Applied Sciences, 1, 518. doi. org/10.1007/s42452-019-0486-4 google scholar
  • Jackson, M.L. (1967). Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi google scholar
  • Jin, J., Jiang, C. (2002). Spatial variability of soil nutrients and site-specific nutrient management in the P.R. China. Computers and Electronics in Agriculture, 36(2-3), 165-172. doi. org/10.1016/S0168-1699(02) 00099-6 google scholar
  • Jones, P.R. (2019). A note on detecting statistical outliers in psychophysical data. Attention, Perception, Psychophysics, 81, 1189-1196. doi. org/10.3758/s13414-019-01726-3 google scholar
  • Kerry, R., Oliver, M.A. (2007). Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma, 140(4), 383-396. doi.org/10.1016/j.geoderma.2007.04.019 google scholar
  • Kerry, R., Oliver, M.A., Frogbrook, Z.L. (2010). Sampling in precision agriculture. In Oliver M. A. (Ed.), Geostatistical Applications for Precision Agriculture (pp. 35-63). 2010; Dordrecht: Springer. doi. org/10.1007/978-90-481-9133-8_2 google scholar
  • Khan, S.T., Malik, A., Alwarthan, A., Shaik, M.R. (2022). The enormity of the zinc deficiency problem and available solutions; an overview. Arabian Journal of Chemistry, 15(3), 103668. doi. org/10.1016/j.arabjc.2021.103668 google scholar
  • Kibblewhite, M.G., Ritz, K., Swift, M.J. (2007). Soil health in agricultural systems. Philosophical Transactions of the Royal Society B Biological Sciences, 363(1492), 685-701. doi.org/10.1098/rstb.2007.2178 google scholar
  • Koç, E., Karayiğit, B. (2022). Assessment of biofortification approaches used to improve micronutrient-dense plants that are a sustainable solution to combat hidden hunger. Journal of Soil Science and Plant Nutrition, 22 (1), 475-500. doi. org/10.1007/s42729-021-00663-1 google scholar
  • Kumar, M., Babel, A.L. (2011). Available Micronutrient Status and Their Relationship with Soil Properties of Jhunjhunu Tehsil, District Jhunjhunu, Rajasthan, India. Journal of Agricultural Science, 3(2), 97-106. doi. org/10.5539/jas.v3n2p97 google scholar
  • Kumar, M., Kar, A., Raina, P., Singh, S.K., Moharna P.C., Chauhan, J.S. (2019). Spatial variability of available soil nutrients in the Shekhawati Region of Thar Desert, India. 67(1), 21-33. doi.org/10.5958/0974-0228.2019.00003 Journal of the Indian Society of Soil Science,.3 google scholar
  • Laekemariam, F., Kibret, K., Mamo, T., Shiferaw, H. (2018). Accounting Spatial Variability of Soil Properties and Mapping Fertilizer Types Using Geostatistics in Southern Ethiopia. Communications in Soil Science and Plant Analysis, 49(1), 124-137. doi. org/10.1080/00103624.2017.1421656 google scholar
  • Li, Q., Li, S., Xiao, Y., Zhao, B., Wang, C., Li, B., Gao, X., Li, Y., Bai, G., Wang, Y., Yuan, D. (2019). Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012. CATENA, 175, 278-285. doi. org/10.1016/j.CATENA.2018.12.025 google scholar
  • Li, Q., Luo, Y., Wang, C., Li, B., Zhang, X., Yuan, D., Gao, X., Zhang, H. (2016). Spatiotemporal variations and factors affecting soil nitrogen in the purple hilly area of Southwest China during the 1980s and the 2010s. Science of the Total Environment, 547, 173181. doi. org/10.1016/j.scitotenv.2015.12.094 google scholar
  • Lindsay, W. L., Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron manganese and copper. Soil Science Society of America Journal, 42, 421-428. doi. org/10.2136/sssaj1978.03615995004200030009x google scholar
  • Lipiec, J., Usowicz, B. (2018). Spatial relationships among cereal yields and selected soil physical and chemical properties. Science of the Total Environment, 633, 1579-1590. doi.org/10.1016/j.scitotenv.2018.03.277 google scholar
  • Lopez-Granados, F., Jurado-Exposito, M., Atenciano, S., Garda-Ferrer. A., Sanchez de la Orden, M., Garcia-Torres, L. (2002). Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 246, 97-105. doi. org/10.1023/A:1021568415380 google scholar
  • McGrath, D., Zhang, C. (2003). Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Applied Geochemistry, 18(10), 1629-1639. doi.org/10.1016/S0883-2927(03)00045-3 google scholar
  • McGrath, D., Zhang, C., Carton, O.T. (2004). Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution, 127(2), 239-248. doi. org/10.1016/j.envpol.2003.07.002 google scholar
  • Moharana, P.C., Naitam, R.K., Verma, T.P., Meena, R.L., Kumar, S., Tailor, B.L., Singh, R.S., Singh S.K., Samal, S.K. (2017). Effect of long-term cropping systems on soil organic carbon pools and soil quality in western plain of hot arid India. Archives of Agronomy and Soil Science, 63(12), 1661-1675. doi. org/10.1080/03650340.2017.1304637 google scholar
  • Morton, C.M., Pullabhotla, H., Bevis, L., Lobell, D.B. (2023). Soil micronutrients linked to human health in India. Scientific Reports, 13, 13591. doi.org/10.1038/s41598-023-39084-8 google scholar
  • Nadal-Romero, E., Cammeraat, E., Perez-Cardiel, E., Lasanta, T. (2016). How do soil organic carbon stock change after crop land abandonment in Mediterranean humid mountain areas? Science of the Total Environment, 566-567, 741-752. doi.org/10.1016/j.scitotenv.2016.05.031 google scholar
  • Ngabire, M., Wang, T., Xue, X., Liao, J., Sahbeni, G., Huang, C., et al. (2022). Soil salinization mapping across different sandy land-cover types in the Shiyang River Basin: A remote sensing and multiple linear regression approach. Remote Sensing Applications: Society and Environment, 28, 100847. google scholar
  • Niranjan, H.K., Chouhan, R.S., Sharma, H.O., Rathi, D. (2018). Awareness and performance of soil health card scheme in central India. Journal of Crop and Weed, 14(1), 99-103. google scholar
  • Nogiya, M., Moharana, P.C., Meena, R., Yadav, B., Jangir, A., Malav, L.C., Sharma, R.P., Kumar, S., Meena, R.S., Sharma, G.K., Jena, R.K., Mina, B.L. Patil, N.G. (2024). Spatial variability of soil variables using geostatistical approaches in the hot arid region of India. Environmental Earth Sciences, 83, 432. doi. org/10.1007/s12665-024-11737-5 google scholar
  • Olsen, S.R., Cole, C.V., Watanable, F.S., Dean, L.A., (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington, p 939 google scholar
  • Patra, A.K., Dutta, S.K., Dey, P., Majumdar, K., Sanyal, S.K. (2017). Potassium Fertility Status of Indian Soils: National Soil Health Card Database Highlights the Increasing Potassium Deficit in Soils. Indian Journal of Fertilisers, 13 (11), 28-33. google scholar
  • Pratibha, T.D., Saikia, B., Raju P.L.N. (2020). Land use planning using geospatial technology and soil health card data for a micro watershed in sub-tropical humid region of Meghalaya. Agricultural Research Technology: Open Access Journal, 25(2), 556301. google scholar
  • R Core Team (2023). R for Windows google scholar
  • Reddy, A.A. (2019). The Soil Health Card Scheme in India: Lessons Learned and Challenges for Replication in Other Developing Countries. Journal of Natural Resources Policy Research, 9 (2), 124–156. doi. org/10.5325/naturesopolirese.9.2.0124 google scholar
  • Reza, S. K., Dutta, D., Bandyopadhyay, S., Singh, S. K. (2019). Spatial Variability Analysis of Soil Properties of Tinsukia District, Assam, India. Agricultural Research, 8, 231-238. doi. org/10.1007/s40003-018-0365-z google scholar
  • Reza, S.K., Baruah, U., Sarkar, D., Singh, S.K. (2016). Spatial variability of soil properties using geostatistical method: a case study of lower Brahmaputra plains, India. Arabian Journal of Geosciences, 9, 446. doi. org/10.1007/s12517-016-2474-y google scholar
  • Reza, S.K., Nayak, D.C., Mukhopadhyay, S., Chattopadhyay, T., Singh, S.K. (2017). Characterizing spatial variability of soil properties in alluvial soils of India using geostatistics and geographical information system. Archives of Agronomy and Soil Science, 63(11), 1489-1498. doi. org/10.1080/03650340.2017.1296134 google scholar
  • Saleh, A.M. (2018). Spatial Variability Mapping of Some Soil Properties in Jadwal Al_Amir Project/Babylon/Iraq. Journal of the Indian Society of Remote Sensing, 46, 1481-1495. doi. org/10.1007/ s12524-018-0795-x google scholar
  • Salem, H.M., Schott, L.R., Piaskowski, J., Chapagain, A., Yost, J.L., Brooks, E., Kahl, K., Johnson-Maynard, J. (2024). Evaluating Intra-Field Spatial Variability for Nutrient Management Zone Delineation through Geospatial Techniques and Multivariate Analysis. Sustainability, 16, 645. doi. org/10.3390/su16020645 google scholar
  • Sanad, H., Moussadek, R., Mouhir, L., Oueld Lhaj, M., Dakak, H., El Azhari, H., Yachou, H., Ghanimi, A., Zouahri, A. (2024). Assessment of Soil Spatial Variability in Agricultural Ecosystems Using Multivariate Analysis, Soil Quality Index (SQI), and Geostatistical Approach: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Agronomy, 14, 1112. doi. org/10.3390/agronomy14061112 google scholar
  • Sashikala, G., Naidu, M.V.S, Ramana, K.V, Nagamadhuri, K.V., Reddy, A.P.K., Sushakar, P. (2019). Soil Fertility Status in Tatrakallu Village of Andhra Pradesh for Site Specific Recommendations. International Journal of Current Microbiology and Applied Sciences, 8(6), 1016-1023. doi. org/10.20546/ijcmas.2019.806.124 google scholar
  • Sharma, P., Shukla, M.K., Mexal, J.G. (2011). Spatial variability of soil properties in agricultural fields of Southern New Mexico. Soil Science, 176(6), 288-302.doi.org/10.1097/SS.0b013e31821c0dab google scholar
  • SHC (2023). Soil Health Card (SHC). google scholar
  • Shukla, A.K., Behera, S.K., Singh, V.K., Prakash, C., Sachan, A.K., Dhaliwal, S.S., Srivastava, P.C., Pachauri, S.P., Tripathi, A., Pathak, J., Nayak, A.K., Kumar, A., Tripathi, R., Dwivedi, B.S., Datta, S.P., Meena, M.C., Das, S., Trivedi, V. (2020). Pre-monsoon spatial distribution of available micronutrients and sulphur in surface soils and their management zones in Indian Indo-Gangetic Plain. PLoS One, 15(6), e0234053. doi.org/10.1371/journal.pone.0234053 google scholar
  • Shukla, A.K., Tiwari, P.K., Chandra P. (2014). Micronutrients Deficiencies vis-â-vis Food and Nutritional Security of India. Indian Journal of Fertilizer, 10 (12), 94-112. google scholar
  • Subbiah, B.V., Asija, G.L. (1956). A rapid procedure for the determination of available nitrogen in soils. Current Science, 25, 259-260. google scholar
  • Tagore, G.S., Singh, B., Kulhare, P.S., Jatav, R.D. (2015). Spatial variability of available nutrients in soils of Nainpur tehsil of Mandla district of Madhya Pradesh, India using Geo-statistical approach. African Journal of Agricultural Research, 10(34), 3358-3373. doi. org/10.5897/AJAR2015.9578 google scholar
  • Tamburi, V., Shetty, A., Shrihari, S. (2020). Characterization of spatial variability of vertisol micronutrients by geostatistical techniques in Deccan Plateau of India. Modeling Earth Systems and Environment, 6, 173-182. doi. org/10.1007/s40808-019-00669-w google scholar
  • Tang, X.L., Xia, M.P., Perez-Cruzado, C., Guan, F.Y., Fan, S.H. (2017). Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China. Scientific Reports, 7, 1-13. doi.org/10.1038/srep42640 google scholar
  • Tripathi, R., Nayak, A.K., Shahid, M., Raja, R., Panda, B.B., Mohanty, S., Kumar, A., Lal, B., Gautam, P., Sahoo, R.N. (2015). Characterizing spatial variability of soil properties in salt affected coastal India using geostatistics and kriging. Arabian Journal of Geoscience, 8, 10693-10703 (2015). doi.org/10.1007/s12517-015-2003-4 google scholar
  • Vasu, D., Sahu, N., Tiwary, P., Chandran, P. (2021). Modelling the spatial variability of soil micronutrients for site specific nutrient management in a semi-arid tropical environment. Modeling Earth Systems and Environment, 7, 1797-1812. doi. org/10.1007/s40808-020-00909-4 google scholar
  • Vasu, D., Singh, S.K., Ray, S.K., Duraisami, V.P., Tiwary, P., Chandran, P., Nimkar, A.M., Anantwar, S.G. (2016). Soil quality index as a tool to evaluate crop productivity in semi-arid Deccan plateau India. Geoderma, 282, 70-79. doi. org/10.1016/j.geoderma.2016.07.010 google scholar
  • Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V. P., Kalaiselvi, B. (2017). Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil and Tillage Research, 169, 25-34. doi.org/10.1016/j.still.2017.01.006 google scholar
  • Velamala, R. R., Pant, P. K. (2023). SFMToolbox: an ArcGIS Python Toolbox for Automatic Production of Maps of Soil Fertility. Geomatics and Environmental Engineering, 17(2), 105-145. doi.org/10.7494/geom.2023.17.2.105 google scholar
  • Velamala, R. R., Pant, P. K. (2024). SFM_MB Toolbox: a new ArcGIS toolbox for building spatial distribution maps of soil fertility using model builder in ArcMap of ArcGIS, a case study. Arabian Journal of Geosciences, 17, 46. doi. org/10.1007/s12517-023-11843-x google scholar
  • Verma, R.R., Srivastava, T.K., Singh, P., Manjunath, B.L., Kumar, A. (2021). Spatial mapping of soil properties in Konkan region of India experiencing anthropogenic onslaught. PLoS One, 16(2), e0247177. doi. org/10.1371/journal.pone.0247177 google scholar
  • Vieira, S.R., Gonzalez, P.A. (2003). Analysis of spatial variability of crop yield and soil properties in small agricultural plots. Bragantia, 62, 127-138. doi.org/10.1590/S0006-87052003000100016 google scholar
  • Walkley, A., Black, I.A. (1934). An examination of Dgetyarelt methods for determining soil organic matter and proposed modifications of the chromic acid method. Soil Science, 37, 29-38. doi.org/10.1097/ 00010694-193401000-00003 google scholar
  • Wani, S.P., Singh, D. (2021). Transformation of the rural sector for atmanirbhar India. In: Gurumurthy, S., Gupta, A. (Eds.), Atmanirbhar Bharat: A Vibrant and Strong India, Vivekananda International Foundation, New Delhi, India, pp. 279-300. Aryan Books International, New Delhi google scholar
  • Webster, R., Oliver, M.A. (2001). Geostatistics for Environmental Scientists. John Wiley Sons, Ltd., Chichester, 271 pp. google scholar
  • Wilding, L.P. (1985). Spatial Variability: its documentation, accommodation, and implication to soil surveys. In: Nielsen, D.R., Bouma, J. (Eds.), Soil Spatial Variability. Pudoc, Wageningen, Netherlands. google scholar
  • Williams, C.H., Steinbergs, A. (1959). Soil sulphur fraction as chemical indices of available sulphur in soils. Australian Journal of Agricultural Research, 10, 340-352. doi. org/10.1071/AR9590340 google scholar
  • Yumin, Y., Kai, Y., Lirong, C., Yijuan, B., Yingying, W., Ying, H., Aizhong, D. (2022). Effect of Normalization Methods on Accuracy of Estimating Low- and High-Molecular Weight PAHs Distribution in the Soils of a Coking Plant. International Journal of Environmental Research and Public Health, 19(23), 15470. doi. org/10.3390/ijerph192315470 google scholar
  • Zhang, C.S. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial pattern in urban soils in Galway, Ireland. Environmental Pollution, 142(3), 501-511. doi. org/10.1016/j.envpol.2005.10.028 google scholar
  • Zhang, C.S., Fay, D., McGrath, D., Grennan, E., Carton, O.T. (2008). Use of trans-Gaussian kriging for national soil geochemical mapping in Ireland. Geochemistry: Exploration, Environment, Analysis, 8, 255-265. doi. org/10.1144/1467-7873/08-173 google scholar
  • Zhang, C.S., Manheim, F.T., Hinde, J., Grossman, J.N. (2005). Statistical characterization of a large geochemical database and effect of sample size. Applied Geochemistry, 20, 1857-1874. doi.org/10.1016/j.apgeochem.2005.06.006 google scholar
  • Zhang, H., Zhuang, S., Qian, H., Wang, F., Ji, H. (2015). Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties. PLoS ONE, 10(3), e0119175. doi. org/10.1371/journal.pone.0119175 google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Velamala, R.R., & Pant, P.K. (2024). Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India. International Journal of Environment and Geoinformatics, 11(3), 90-105. https://doi.org/10.30897/ijegeo.1465671


AMA

Velamala R R, Pant P K. Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India. International Journal of Environment and Geoinformatics. 2024;11(3):90-105. https://doi.org/10.30897/ijegeo.1465671


ABNT

Velamala, R.R.; Pant, P.K. Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India. International Journal of Environment and Geoinformatics, [Publisher Location], v. 11, n. 3, p. 90-105, 2024.


Chicago: Author-Date Style

Velamala, Ranga Rao, and Pawan Kumar Pant. 2024. “Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India.” International Journal of Environment and Geoinformatics 11, no. 3: 90-105. https://doi.org/10.30897/ijegeo.1465671


Chicago: Humanities Style

Velamala, Ranga Rao, and Pawan Kumar Pant. Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India.” International Journal of Environment and Geoinformatics 11, no. 3 (Dec. 2024): 90-105. https://doi.org/10.30897/ijegeo.1465671


Harvard: Australian Style

Velamala, RR & Pant, PK 2024, 'Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India', International Journal of Environment and Geoinformatics, vol. 11, no. 3, pp. 90-105, viewed 23 Dec. 2024, https://doi.org/10.30897/ijegeo.1465671


Harvard: Author-Date Style

Velamala, R.R. and Pant, P.K. (2024) ‘Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India’, International Journal of Environment and Geoinformatics, 11(3), pp. 90-105. https://doi.org/10.30897/ijegeo.1465671 (23 Dec. 2024).


MLA

Velamala, Ranga Rao, and Pawan Kumar Pant. Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India.” International Journal of Environment and Geoinformatics, vol. 11, no. 3, 2024, pp. 90-105. [Database Container], https://doi.org/10.30897/ijegeo.1465671


Vancouver

Velamala RR, Pant PK. Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India. International Journal of Environment and Geoinformatics [Internet]. 23 Dec. 2024 [cited 23 Dec. 2024];11(3):90-105. Available from: https://doi.org/10.30897/ijegeo.1465671 doi: 10.30897/ijegeo.1465671


ISNAD

Velamala, RangaRao - Pant, PawanKumar. Modeling the Spatial Variability of Soil Nutrients - A Case from Soil Health Card Project, India”. International Journal of Environment and Geoinformatics 11/3 (Dec. 2024): 90-105. https://doi.org/10.30897/ijegeo.1465671



ZAMAN ÇİZELGESİ


Gönderim05.04.2024
Kabul10.09.2024
Çevrimiçi Yayınlanma28.09.2024

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.