Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid)
Hatice Aylin Karahan Toprakçı, Deniz Yılmaz Savcı, Ozan ToprakçıIn recent years, ecological pollution has reached critical levels and that has been experienced as climate change by all living organisms. Slowing down the negative effects of climate change depends on changing our consumption behavior. Based on that, people tend to prefer more environmentally friendly, sustainable raw materials, products, and processes. Since polymers are one of the most widely used raw materials in the world, any improvement regarding their recycling or biodegradation process can significantly reduce the damage to nature. Considering this fact, manufacturers are taking initiatives to develop such products in line with the demand from consumers. As is known, poly(lactic acid) (PLA) is one of the most consumed biodegradable polymers in the market; however, there are various problems especially in film production, due to its rigid structure. Plasticization is the easiest route to minimize this disadvantage. The aim of this study is to produce and characterize PLA composites with increased flexibility by using sustainable natural materials. In this context, glycerol-plasticized PLA and unplasticized PLA composites were prepared using perlite, a natural additive, and their morphological, thermal, and mechanical properties were investigated.
PDF Görünüm
Referanslar
- Aksoy, Ö., Alyamaç, E., Mocan, M., Sütçü, M., Özveren-Uçar, N., Seydibeyoğlu, M. Ö. (2022). Characterization of perlite powders from Izmir, Türkiye region. Physicochemical Problems of Mineral Processing, 58(6), 155277. google scholar
- Almazrouei, M., Adeyemi, I., Janajreh, I. (2022). Thermogravimetric assessment of the thermal degradation during combustion of crude and pure glycerol. Biomass Conversion and Biorefinery, 12(10), 4403-4417. google scholar
- Almazrouei, M., Samad, T. El, Janajreh, I. (2017). Thermogravimetric Kinetics and High Fidelity Analysis of Crude Glycerol. Energy Procedia, 142, 1699-1705. google scholar
- Al-Mulla, E. A. J., Yunus, W. M. Z. W., Ibrahim, N. A. B., Rahman, M. Z. A. (2010). Properties of epoxidized palm oil plasticized polytlactic acid. Journal of Materials Science, 45(7), 1942-1946. google scholar
- Arrieta, M. P. (2021). Influence of plasticizers on the compostability of polylactic acid. Journal of Applied Research in Technology Engineering, 2(1), 1-9. google scholar
- Carpintero, M., Marcet, I., Rendueles, M., Diaz, M. (2022). Egg Yolk Oil as a Plasticizer for Polylactic Acid Films. Membranes, 12(1), 46. google scholar
- Cetin, M. S., Aydogdu, R. B., Toprakci, O., Karahan Toprakci, H. A. (2022). Sustainable, Tree-Free, PLA Coated, Biodegradable, Barrier Papers from Kendir (Turkish Hemp). Journal of Natural Fibers, 19(16), 13802-13814. google scholar
- Chen, P., Zhou, H., Liu, W., Zhang, M., Du, Z., Wang, X. (2015). The synergistic effect of zinc oxide and phenylphosphonic acid zinc salt on the crystallization behavior of poly (lactic acid). Polymer Degradation and Stability, 122, 25-35. google scholar
- Chieng, B. W., Ibrahim, N. A., Then, Y. Y., Loo, Y. Y. (2014). Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: Mechanical, thermal and morphology properties. Molecules, 19(10), 16024-16038. google scholar
- Chieng, B. W., Ibrahim, N. A., Yunus, W. M. Z. W., Hussein, M. Z. (2014). Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers, 6(1), 93-104. google scholar
- Di Lorenzo, M. L., Androsch, R. (2019). Influence of a‘-/a-crystal polymorphism on properties of poly(l-lactic acid). Polymer International, 68(3), 320-334. google scholar
- Doğan, M., Alkan, M. (2004). Some physicochemical properties of perlite as an adsorbent. Fresenius Environmental Bulletin, 13(3B), 251-257. google scholar
- Dou, B., Dupont, V., Williams, P. T., Chen, H., Ding, Y. (2009). Thermogravimetric kinetics of crude glycerol. Bioresource Technology, 100(9), 2613-2620. google scholar
- Eğri, Ö. (2019). Use of microperlite in direct polymerization of lactic acid. International Journal of Polymer Analysis and Characterization, 24(2), 142149. google scholar
- Ekiz, I., Cetin, M. S., Toprakci, O., Toprakci, H. A. K. (2022). Effects of S/EB ratio on some properties of PLA/SEBS blends. Bulletin of Materials Science, 45(4), 251. google scholar
- Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. google scholar
- Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L. A., Kenny, J. M. (2012). Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer Degradation and Stability, 97(10), 2027-2036. google scholar
- Grigale, Z., Kalnins, M., Dzene, A., Tupureina, V. (2010). Biodegradable Plasticized Poly(lactic acid) Films. Scientific Journal of Riga Technical University Material Science and Applied Chemistry, 21, 97-103. google scholar
- Gumus, S., Ozkoc, G., Aytac, A. (2012a). Plasticized and unplasticized PLA/organoclay nanocomposites: Short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior. Journal of Applied Polymer Science, 123(5), 2837-2848. google scholar
- Gumus, S., Ozkoc, G., Aytac, A. (2012b). Plasticized and unplasticized PLA/organoclay nanocomposites: Short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior. Journal of Applied Polymer Science, 123(5), 2837-2848. google scholar
- Halasz, K., Csoka, L. (2013). Plasticized Biodegradable Poly(lactic acid) Based Composites Containing Cellulose in Micro- and Nanosize. Journal of Engineering (United Kingdom), 2013, 329379. google scholar
- Halloran, M. W., Danielczak, L., Nicell, J. A., Leask, R. L., Maric, M. (2022). Highly Flexible Polylactide Food Packaging Plasticized with Nontoxic, Biosourced Glycerol Plasticizers. ACS Applied Polymer Materials, 4(5), 3608-3617. google scholar
- Immergut, E. H., Mark, H. F. (1965). Principles of Plasticization. Advances in Chemistry, 48, 1-29 google scholar
- Jacobsen, S., Fritz, H. G. (1999). Plasticizing polylactide - the effect of different plasticizers on the mechanical properties. Polymer Engineering and Science, 39(7), 1303. google scholar
- Jing, Q., Fang, L., Liu, H., Liu, P. (2011). Preparation of surface-vitrified micron sphere using perlite from Xinyang, China. Applied Clay Science, 53(4), 745748. google scholar
- Kabra, S., Katara, S., Rani, A. (2013). Characterization and Study of Turkish Perlite. International Journal of Innovative Research in Science, Engineering and Technology, 2(9), 4319-4326. google scholar
- Kantee, J., Kajorncheappunngam, S. (2017). Properties of plasticized polylactic acid films with epoxidized rubber seed oil. Chiang Mai Journal of Science, 44(4), 1591-1600. google scholar
- Kaufhold, S., Reese, A., Schwiebacher, W., Dohrmann, R., Grathoff, G. H., Warr, L. N., Halisch, M., Müller, C., Schwarz-Schampera, U., Ufer, K. (2014). Porosity and distribution of water in perlite from the island of Milos, Greece. Journal of the Korean Physical Society, 3(1), 598. google scholar
- Li, D., Jiang, Y., Lv, S., Liu, X., Gu, J., Chen, Q., Zhang, Y. (2018). Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS ONE, 13(3), 1-15. google scholar
- Li, H., Huneault, M. A. (2007). Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer, 48(23), 6855-6866. google scholar
- Ljungberg, N., Wesslen, B. (2005). Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules, 6(3), 1789-1796. google scholar
- Maiza, M. ’Benaniba, M. T. ’Quintard, G. ’Massardier-N. V. (2015). Biobased additive plasticizing Polylactic acid (PLA). . Polimeros , 25, 581-590. google scholar
- Maizatul, N., Norazowa, I., Yunus, W. M. Z. W., Khalina, A., Khalisanni, K. (2013). FTIR and TGA analysis of biodegradable poly(lactic acid)/treated kenaf bast fibre: Effect of plasticizers. Pertanika Journal of Science and Technology, 21(1), 151-160. google scholar
- Martino, V. P., Jimenez, A., Ruseckaite, R. A. (2009). Processing and characterization of poly(lactic acid) films plasticized with commercial adipates. Journal of Applied Polymer Science, 112(4), 2010-2018. google scholar
- Maxim, L. D., Niebo, R., Mcconnell, E. E. (2014). Perlite toxicology and epidemiology - A review. Inhalation Toxicology, 26(5), 259-270. google scholar
- Mousa, N., Galiwango, E., Haris, S., Al-marzouqi, A. H., Abu-jdayil, B., Caires, Y. L. (2022). A New Green Composite Based on Plasticized Polylactic Acid Mixed with Date Palm Waste for Single-Use Plastics Applications. Polymers, 14(3), 574. google scholar
- Muller, J., Gonzâlez-Martinez. C., Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56-70. google scholar
- Papageorgiou, G. Z., Terzopoulou, Z., Bikiaris, D., Triantafyllidis, K. S., Diamanti, E., Gournis, D., Klonos, P., Giannoulidis, E., Pissis, P. (2014). Evaluation of the formed interface in biodegradable poly(l-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties. Thermochimica Acta, 597, 48-57. google scholar
- Pop, M. A., Croitoru, C., Bedo, T., Geaman, V., Radomir, I., Coşnita, M., Zaharia, S. M., Chicoş, L. A., Miloşan, I. (2019). Structural changes during 3D printing of bioderived and synthetic thermoplastic materials. Journal of Applied Polymer Science, 136(17), 47382. google scholar
- Sears, J. K. and D. J. R. (1982). The Technology of plasticizers. Journal of Polymer Science: Polymer Letters Edition, 20(8), 459. google scholar
- Sodeyama, K., Sakka, Y., Kamino, Y., Seki, H. (1999). Preparation of fine expanded perlite. Journal of Materials Science, 34(10), 2461-2468. google scholar
- Su, Z., Liu, Y., Guo, W., Li, Q., Wu, C. (2009). Crystallization behavior of poly(lactic acid) filled with modified carbon black. Journal of Macromolecular Science, Part B: Physics, 48(4), 670-683. google scholar
- Szostak, R., Thomas, T. L. (1986). Reassessment of zeolite and molecular sieve framework infrared vibrations. Journal of Catalysis, 101(2), 549-552. google scholar
- Tarani, E., Pusnik Ğresnar, K., Zemljic, L. F., Chrissafis, K., Papageorgiou, G. Z., Lambropoulou, D., Zamboulis, A., Bikiaris, D. N., Terzopoulou, Z. (2021). Cold crystallization kinetics and thermal degradation of pla composites with metal oxide nanofillers. Applied Sciences (Switzerland), 11(7), 3004. google scholar
- Tian, H., Tagaya, H. (2007). Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites. Journal of Materials Science, 42(9), 3244-3250. google scholar
- Velghe, I., Buffel, B., Vandeginste, V., Thielemans, W., Desplentere, F. (2023). Review on the Degradation of Poly(lactic acid) during Melt Processing. Polymers, 15(9), 2047. google scholar
- Wypych, A. (2017). Databook of Plasticizers. Toronto: ChemTec Publishing. google scholar
- Wypych, G. (2017). Handbook of plasticisers. Toronto: ChemTec Publishing. google scholar
- Xu, Y. Q., Qu, J. P. (2009). Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). Journal of Applied Polymer Science, 112(6), 3185-3191. google scholar
- YousefniaPasha, H., Mohtasebi, S. S., Tabatabaeekoloor, R., Taherimehr, M., Javadi, A., Soltani Firouz, M. (2021). Preparation and characterization of the plasticized polylactic acid films produced by the solvent-casting method for food packaging applications. Journal of Food Processing and Preservation, 45(12), e16089. google scholar
- Yuan, Y., Hu, Z., Fu, X., Jiang, L., Xiao, Y., Hu, K., Yan, P., Lei, J. (2016). Poly(lactic acid) plasticized by biodegradable glyceryl lactate. Journal of Applied Polymer Science, 133(21), 43460. google scholar
- Zhai, W., Ko, Y., Zhu, W., Wong, A., Park, C. B. (2009). A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. International Journal of Molecular Sciences, 10(12), 5381-5397. google scholar
Atıflar
Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın
DIŞA AKTAR
APA
Karahan Toprakçı, H.A., Savcı, D.Y., & Toprakçı, O. (2024). Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid). International Journal of Environment and Geoinformatics, 11(3), 60-68. https://doi.org/10.30897/ijegeo.1467716
AMA
Karahan Toprakçı H A, Savcı D Y, Toprakçı O. Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid). International Journal of Environment and Geoinformatics. 2024;11(3):60-68. https://doi.org/10.30897/ijegeo.1467716
ABNT
Karahan Toprakçı, H.A.; Savcı, D.Y.; Toprakçı, O. Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid). International Journal of Environment and Geoinformatics, [Publisher Location], v. 11, n. 3, p. 60-68, 2024.
Chicago: Author-Date Style
Karahan Toprakçı, Hatice Aylin, and Deniz Yılmaz Savcı and Ozan Toprakçı. 2024. “Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid).” International Journal of Environment and Geoinformatics 11, no. 3: 60-68. https://doi.org/10.30897/ijegeo.1467716
Chicago: Humanities Style
Karahan Toprakçı, Hatice Aylin, and Deniz Yılmaz Savcı and Ozan Toprakçı. “Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid).” International Journal of Environment and Geoinformatics 11, no. 3 (Dec. 2024): 60-68. https://doi.org/10.30897/ijegeo.1467716
Harvard: Australian Style
Karahan Toprakçı, HA & Savcı, DY & Toprakçı, O 2024, 'Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid)', International Journal of Environment and Geoinformatics, vol. 11, no. 3, pp. 60-68, viewed 23 Dec. 2024, https://doi.org/10.30897/ijegeo.1467716
Harvard: Author-Date Style
Karahan Toprakçı, H.A. and Savcı, D.Y. and Toprakçı, O. (2024) ‘Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid)’, International Journal of Environment and Geoinformatics, 11(3), pp. 60-68. https://doi.org/10.30897/ijegeo.1467716 (23 Dec. 2024).
MLA
Karahan Toprakçı, Hatice Aylin, and Deniz Yılmaz Savcı and Ozan Toprakçı. “Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid).” International Journal of Environment and Geoinformatics, vol. 11, no. 3, 2024, pp. 60-68. [Database Container], https://doi.org/10.30897/ijegeo.1467716
Vancouver
Karahan Toprakçı HA, Savcı DY, Toprakçı O. Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid). International Journal of Environment and Geoinformatics [Internet]. 23 Dec. 2024 [cited 23 Dec. 2024];11(3):60-68. Available from: https://doi.org/10.30897/ijegeo.1467716 doi: 10.30897/ijegeo.1467716
ISNAD
Karahan Toprakçı, HaticeAylin - Savcı, DenizYılmaz - Toprakçı, Ozan. “Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid)”. International Journal of Environment and Geoinformatics 11/3 (Dec. 2024): 60-68. https://doi.org/10.30897/ijegeo.1467716