Araştırma Makalesi


DOI :10.26650/ijmath.2024.00020   IUP :10.26650/ijmath.2024.00020    Tam Metin (PDF)

A New Liu-Ratio Estimator For Linear Regression Models

İsmail Müfit GiresunluKadri Ulaş AkayEsra Ertan

In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables. Although there are various methods for estimating parameters, the most popular is the Ordinary Least Squares (OLS) method. However, in the presence of multicollinearity and outliers, the OLS estimator may give inaccurate values and also misleading inference results. There are many modified biased robust estimators for the simultaneous occurrence of outliers and multicollinearity in the data. In this paper, a new estimator called the Liu-Ratio Estimator (LRE), which can be used as an alternative to the Least Squares Ratio (LSR) estimator and the Ridge Ratio estimator (RRE), is proposed to mitigate the effect of 𝑦-direction outliers and multicollinearity in the data. The performance of the proposed estimator is examined in two Monte Carlo simulation studies in the presence of multicollinearity and 𝑦-direction outliers. According to the simulation results, LRE is a strong alternative to LSR and RRE in the presence of multicollinearity and 𝑦-direction outliers in the data. 


PDF Görünüm

Referanslar

  • Akbilgic O., Akinci E. D., 2009, A Novel Regression Approach: Least Squares Ratio, Communications in Statistics-Theory and Methods, 38, 1539-1545. google scholar
  • Arslan, O., Billor, N., 2000, Robust Liu Estimator for Regression based on an M-estimator, Journal of Applied Statistics, 27, 1, 39-47. google scholar
  • Ertaş, H., Kaçzranlar, S., Güler, H., 2017, RobustLiu-typeestimator forregressionbasedon M-estimator, Communications in Statistics-Simulation and Computation, 46, 5, 3907-3932. google scholar
  • Filzmoser, P., Kurnaz, F. S., 2018, A robust Liu regression estimator, Communications in Statistics-Simulation and Computation, 47, 2, 432-443. google scholar
  • Hoerl A.E., Kennard R.W., 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 1, 55-67. google scholar
  • Jadhav, N. H., Kashid, D. N., 2016, Robust Linearized Ridge M-estimator for Linear Regression Model, Communication in Statistics-Simulation and Computation, 45, 3, 1001-1024. google scholar
  • Jadhav, N. H., Kashid, D. N., 2018, Ridge Least Squares Ratio Estimator For Linear Regression Model, International Journal of Agricultural & Statistical Sciences, 14, 2, 439-447. google scholar
  • Kan, B., Alpu, O., Yazici, B., 2013, Robust Ridge and Robust Liu Estimator for Regression based on the LTS Estimator, Journal of Applied Statistics, 40, 3, 644-655. google scholar
  • Kibria, B. G., 2003, Performance of some new ridge regression estimators, Communications in Statistics: Simulation and Computation, 32, 2, 419-435. google scholar
  • Liu, K., 1993, A new class of biased estimate in linear regression, Communications in Statistics-Theory and Methods, 22, 2, 393-402. google scholar
  • Maronna, R. A., Martin, R. D., Yohai, V. J., 2006, Robust Statistics Theory and Methods, Wiley, U.K. google scholar
  • Maronna, R.A., 2011, Robust ridge regression for high-dimensional data, Technometrics, 53, 1, 44-53. google scholar
  • McDonald G.C., Galarneau D.I., 1975, A Monte Carlo evaluation of some ridge-type estimators, Journal of the American Statistical Association, 70, 350, 407-416. google scholar
  • Montgomery, D. C., Peck, E. A., Vinig, G. G., 2001, Introduction to Linear Regression Analysis, 3th. Ed. John Wiley & Sons, Inc., USA. google scholar
  • Qasim, M., Amin, M., Omer, T., 2020). Performance of some new Liu parameters for the linear regression model, Communications in Statistics-Theory and Methods, 49, 17, 4178-4196. google scholar
  • Rousseeuw P.J., Leroy, A.M., 1987, Robust Regression and Outlier Detection, Wiley, New York. google scholar
  • Silvapulle, M. J., 1991, Robust Ridge Regression based on an M-estimator, Australian Journal of Statistics, 33, 3, 319-333. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Giresunlu, İ.M., Akay, K.U., & Ertan, E. (2024). A New Liu-Ratio Estimator For Linear Regression Models. Istanbul Journal of Mathematics, 2(2), 95-108. https://doi.org/10.26650/ijmath.2024.00020


AMA

Giresunlu İ M, Akay K U, Ertan E. A New Liu-Ratio Estimator For Linear Regression Models. Istanbul Journal of Mathematics. 2024;2(2):95-108. https://doi.org/10.26650/ijmath.2024.00020


ABNT

Giresunlu, İ.M.; Akay, K.U.; Ertan, E. A New Liu-Ratio Estimator For Linear Regression Models. Istanbul Journal of Mathematics, [Publisher Location], v. 2, n. 2, p. 95-108, 2024.


Chicago: Author-Date Style

Giresunlu, İsmail Müfit, and Kadri Ulaş Akay and Esra Ertan. 2024. “A New Liu-Ratio Estimator For Linear Regression Models.” Istanbul Journal of Mathematics 2, no. 2: 95-108. https://doi.org/10.26650/ijmath.2024.00020


Chicago: Humanities Style

Giresunlu, İsmail Müfit, and Kadri Ulaş Akay and Esra Ertan. A New Liu-Ratio Estimator For Linear Regression Models.” Istanbul Journal of Mathematics 2, no. 2 (Feb. 2025): 95-108. https://doi.org/10.26650/ijmath.2024.00020


Harvard: Australian Style

Giresunlu, İM & Akay, KU & Ertan, E 2024, 'A New Liu-Ratio Estimator For Linear Regression Models', Istanbul Journal of Mathematics, vol. 2, no. 2, pp. 95-108, viewed 5 Feb. 2025, https://doi.org/10.26650/ijmath.2024.00020


Harvard: Author-Date Style

Giresunlu, İ.M. and Akay, K.U. and Ertan, E. (2024) ‘A New Liu-Ratio Estimator For Linear Regression Models’, Istanbul Journal of Mathematics, 2(2), pp. 95-108. https://doi.org/10.26650/ijmath.2024.00020 (5 Feb. 2025).


MLA

Giresunlu, İsmail Müfit, and Kadri Ulaş Akay and Esra Ertan. A New Liu-Ratio Estimator For Linear Regression Models.” Istanbul Journal of Mathematics, vol. 2, no. 2, 2024, pp. 95-108. [Database Container], https://doi.org/10.26650/ijmath.2024.00020


Vancouver

Giresunlu İM, Akay KU, Ertan E. A New Liu-Ratio Estimator For Linear Regression Models. Istanbul Journal of Mathematics [Internet]. 5 Feb. 2025 [cited 5 Feb. 2025];2(2):95-108. Available from: https://doi.org/10.26650/ijmath.2024.00020 doi: 10.26650/ijmath.2024.00020


ISNAD

Giresunlu, İsmailMüfit - Akay, KadriUlaş - Ertan, Esra. A New Liu-Ratio Estimator For Linear Regression Models”. Istanbul Journal of Mathematics 2/2 (Feb. 2025): 95-108. https://doi.org/10.26650/ijmath.2024.00020



ZAMAN ÇİZELGESİ


Gönderim17.09.2024
Kabul31.12.2024
Çevrimiçi Yayınlanma31.12.2024

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.