Araştırma Makalesi


DOI :10.26650/JEPR1217028   IUP :10.26650/JEPR1217028    Tam Metin (PDF)

Türkiye’de Döviz Kuru Oynaklığının Modellenmesi: Ampirik Bir Araştırma

Sinem Kutlu Horvathİpek M. Yurttagüler

Döviz kurunun denge değeri etrafındaki dalgalanmalara karşılık gelen bir kavram olarak döviz kuru oynaklığı kur riskinin başlıca kaynağıdır ve uluslararası ticaret, yatırımlar ve sermaye akımları başta olmak üzere makroekonomik istikrarı bozacak pek çok değişkeni olumsuz etkilemektedir. Bu bağlamda, döviz kuru oynaklığının ampirik olarak tahmini ve ölçümü yaygın ekonomik etkileri açısından üzerinde durulması gereken bir konudur. Döviz kurlarındaki oynaklığın temel makroekonomik değişkenler üzerinde yarattığı etkiler geniş bir araştırma alanı oluşturmuş, böylece teorik ve ampirik açıdan oldukça zengin bir literatüre de zemin hazırlamıştır. Çalışmamızda, 2003-2022 dönemine ait efektif döviz kuruverileri kullanılarak Türkiye için oynaklık ARCH-GARCH modelleme teknikleriyle tahmin edilmektedir. Çalışmadan elde edilen bulgulara göre, Türkiye için döviz kuru oynaklığının tahmininde GARCH(1,1)'in en uygun model olduğu sonucuna varılmıştır.

JEL Classification : B22 , C53 , F31
DOI :10.26650/JEPR1217028   IUP :10.26650/JEPR1217028    Tam Metin (PDF)

Modeling Exchange Rate Volatility in Türkiye: An Empirical Research

Sinem Kutlu Horvathİpek M. Yurttagüler

Exchange rate volatility is a concept that corresponds to the fluctuations around the equilibrium value of the exchange rate and is the main source of exchange rate risk as it adversely affects many variables that can disrupt macroeconomic stability, especially international trade, investments, and capital flows. In this context, empirical estimation and measurement of exchange rate volatility is an issue that needs to be emphasized in terms of its widespread economic effects. The effects of exchange rate volatility on basic macroeconomic variables have created a wide range of research, thus laying the groundwork for a very rich theoretical and empirical literature. This study estimates the volatility in Türkiye using theAutoregressive conditional heteroskedasticity (ARCH) and generalized ARCH (GARCH) modeling techniques alongside effective exchange rate data for the period of 2003-2022. According to the obtained findings, the study has concluded the GARCH(1,1) model to be the most appropriate model for estimating exchange rate volatility in Türkiye.

JEL Classification : B22 , C53 , F31

GENİŞLETİLMİŞ ÖZET


Exchange rate volatility is a term that refers to wide fluctuations around the long-term equilibrium value of the exchange rate. The transition to floating exchange rate systems has confronted both developed and developing countries with the uncertainty created by exchange rate fluctuations and the resulting risk problem. Volatility in exchange rates is the main source of exchange rate risk, and is of great importance in this context in terms of its macroeconomic implications. Exchange rate volatility is known to negatively affect many macroeconomic variables such as investment, production, consumption, and economic growth, especially in international trade and capital movements. Therefore, empirical estimation and measurement of exchange rate volatility is important for its pervasive economic implications. The effects sudden and unexpected fluctuations in exchange rates have on basic macroeconomic variables have created a wide field of research, thus laying the groundwork for a very rich theoretical and empirical literature.

This study firstly discusses the theoretical framework of the concept of exchange rate volatility and emphasizes the factors that causing exchange rate volatility, as well as the negative effects of volatility on macroeconomic variables. In order to shed light, the study then provides examples from the literature examining exchange rate volatility in Türkiye.

The study’s econometric analysis section estimates volatility in the Turkish economy using effective exchange rate data for the period of 2003-2022. The volatility of many financial time series, including exchange rates, is not constant over time, and recent studies have revealed variance as a measure of volatility to not be constant. As such traditional time series models that accept variance as constant are understood to be insufficient for modeling volatility. In this framework, the study will develop modeling techniques such as autoregressive conditional heteroscedasticity (ARCH) and generalized ARCH (GARCH) models that are based on the assumption of changing variance and that are suitable for the dynamic structure of financial markets. The ARCH and GARCH models allow volatility to change over time and have been widely used for modeling exchange rate volatility. To estimate exchange rate volatility, the study will first ensure the stationarity of the series, then it will apply the ARCH Lagrange multiplier (ARCH-LM) model to determine whether the variance in the error terms is constant. The study then examines the stationarity of the effective exchange rate series together with the autocorrelation function and the cartesian graph; it then performs the unit root test, with any non-stationary series at that level being made stationary by taking the difference. The study determined the most suitable autoregressive integrated moving average (ARIMA) model as a result of the partial and autocorrelation functions of the series. The ARCH effect was investigated regarding the error squares of the determined ARIMA model to determine the volatility of the exchange rate series. Finally, as a result of the analysis made for modeling the exchange rate volatilityin Türkiye, the most appropriate model was determined to be the GARCH(1,1) model. In order to determine the reliability of the model, the study re-performed the ARCH-LM, after which the volatility in the model was seen to have disappeared. Accordingly, the

GARCH(1,1) model has been concluded to be a model that eliminates the effects of exchange rate volatility.


PDF Görünüm

Referanslar

  • Albayrak, Ş.G. (2022). Türkiye’de döviz kuru oynaklığı ile güven endeksleri arasındaki ilişki (2012-2021). İşletme Araştırmaları Dergisi, 14(3), 2458-2469. google scholar
  • Alper, A. E. (2017). Exchange rate volatility and trade flows. Fiscaoeconomia, 1 (3), 14-39. google scholar
  • Backman, M. (2006). Exchange rate volatility-How the Swedish export is influenced [Master Thesis, Jönköping International Business School]. Jönköping University. http://www.diva-portal.org/smash/get/diva2:4287/ FULLTEXT01.pdf google scholar
  • Baillie, R. T., Bollerslev, T. & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74, 3-30.https://doi.org/10.1016/S0304-4076(95)01749-6 google scholar
  • Barguellil, A., Ben-Salha, O. & Zmami, M. (2018). Exchange rate volatility and economic growth. Journal of Economic Integration, 33(2), 1302-1336. http://dx.doi.org/10.11130/jei.2018.33.2.1302 google scholar
  • Bauwens, L. & Sucarrat, G. (2010). General-to-specific modelling of exchange rate volatility: A forecast evaluation. International Journal of Forecasting, 26(4), 885-907. google scholar
  • Bollerslev, T. (1986). Generalized auto regressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-327.https://doi.org/10.1016/0304-4076(86)90063-1 google scholar
  • Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a multivariate generalized Arch model. The Review of Economics and Statistics, 72(3), 498-505. https://doi.org/10.2307/2109358 google scholar
  • Demir, F. (2010). Exchange rate volatility and employment growth in developing countries: evidence from Turkey. World Development, 38(8), 1127-1140.https://doi.org/10.1016/j.worlddev.2009.12.019 google scholar
  • Enders, W. (2004). Applied econometric time series (Second ed.). J. Wiley. google scholar
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987-1007. https://doi.org/10.2307/1912773 google scholar
  • Engle, R. F., Lilien, D. M. & Robins, R. P. (1987). Estimating time varying risk premia in the term structure: The google scholar
  • ARCH-M model. Econometrica, 55(2), 391-407.https://doi.org/10.2307/1913242 google scholar
  • Gujarati, D.N. (2009). Basic econometrics (Fifth ed.), New York: McGraw-Hill/Irwin. google scholar
  • Güloğlu, B. & Akman, A. (2007). Türkiye’de döviz kuru oynaklığının SWARCH yöntemi ile analizi. Finans Politik & Ekonomik Yorumlar, 44(512), 43-51. google scholar
  • Güvenek, B. & Alptekin, V. (2009). Reel döviz kuru endeksinin otoregresif koşullu değişen varyanslılığının analizi: İki eşikli Tarch yöntemi ile modellenmesi. Maliye Dergisi, (156), 294-310. google scholar
  • Hooper, P. & Kohlhagen, S. W. (1978). The effect of exchange rate uncertainty on the prices and volume of international trade. Journal of International Economics, 8(4), 483-511. google scholar
  • Kasman, A. (2003).Türkiye’de reel döviz kuru oynaklığı ve bunun ihracat üzerine etkisi: Sektörel bir analiz. Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, XXII (2), 169-186. google scholar
  • Kasman, A. & Kasman, S. (2005). Exchange rate uncertainty in Turkey and its impact on export volume. METU Studies in Development, 32 (June), 41-58. google scholar
  • Kılıçarslan, Z. (2018). Determinants of exchange rate volatility: empirical evidence for Turkey. Journal of Economics, Finance and Accounting, 5(2), 204-213.http://doi.org/10.17261/Pressacademia.2018.825 google scholar
  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), March, 77-91.https://doi. org/10.2307/2975974 google scholar
  • Nargeleçekenler, M. (2011). Euro kuru satış değerindeki volatilitenin Arch ve Garch modelleri ile tahmini. İstanbul Üniversitesi İktisat Fakültesi Mecmuası, 54(2), 153-179. google scholar
  • Nath, S., Rajput, V. & Gopalakrishnan, S. (2022). Exchange rate volatility in emerging market economies. Reserve Bank of India Bulletin, (August, 2022), 131-142. google scholar
  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach. Econometrica, 59(2), 347-370.https://doi.org/10.2307/2938260 google scholar
  • Nikkei Asia (2014, August 14). IMF finds more countries adopting managed floating exchange rate system, https:// asia.nikkei.com/Business/Markets/Forex/IMF-finds-more-countries-adopting-managed-floating-exchange-rate-system google scholar
  • Oaikhenan, H. E. & Aigheyisi, O. S. (2015). Factors explaining exchange rate volatility in Nigeria: theory and empirical evidence. CBN Economicand Financial Review, 53(2), 47-77. google scholar
  • Okot, A., Kaltenbrunner, A. & Ruiz, D.P. (2022). Determinants of the exchange rate, its volatility and currency crash risk in Africa’s low and lower middle-income countries. European Investment Bank, EIB Working Paper 2022/12. google scholar
  • Özata, E., (2020). The effect of exchange rate volatility on economic growth in Turkey. Journal of Business, google scholar
  • Economics and Finance, 9(1), 42-51.http://doi.org/10.17261/Pressacademia.2020.1191 google scholar
  • Öztürk, İ. (2006). Exchange rate volatility and trade: A literature survey. International Journal of Applied Econometrics and Quantitative Studies, 3(1), 85-102. google scholar
  • Sağlam, M. & Başar, M. (2016). Döviz kuru oynaklığının öngörülmesi: Türkiye örneği. KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi, 18(31), 23-29. google scholar
  • Stancik, J. (2007). Determinants of exchange rate volatility: The case of the new EU members. Czech Journal of Economics and Finance, 57(9-10), 414-432. google scholar
  • Songül, H. (2010). Otoregresif koşullu değişen varyans modelleri: Döviz kurları üzerine uygulama. Uzmanlık Yeterlilik Tezi. Türkiye Cumhuriyet Merkez Bankası Araştırma ve Para Politikası Genel Müdürlüğü, Ankara. google scholar
  • Timothy, O.T., Ada, M.S. & Chigozie, A.O. (2016). Exchange rate volatility and inflation: The Nigerian experience. Journal ofEconomics and Sustainable Development, 7(10), 6-15. google scholar
  • Tümtürk, O. (2019). The impact of exchange rate volatility on export flows in developing countries. International Journal ofEconomic and Administrative Studies, (23), 79-94.https://doi.org/10.18092/ulikidince.469174 google scholar
  • Uysal, D. & Özşahin, Ş. (2012). Reel efektif döviz kuru endeksi volatilitesinin ARCH ve GARCH modelleri ile tahmini. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 12(1), 13-20. google scholar
  • Ünlü, H. (2016). Döviz kuru oynaklığı ve ekonomik büyüme: Türkiye örneği. Sakarya İktisat Dergisi, 5(3), 17-31. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Kutlu Horvath, S., & Yurttagüler, İ.M. (2023). Türkiye’de Döviz Kuru Oynaklığının Modellenmesi: Ampirik Bir Araştırma. İktisat Politikası Araştırmaları Dergisi, 10(2), 435-455. https://doi.org/10.26650/JEPR1217028


AMA

Kutlu Horvath S, Yurttagüler İ M. Türkiye’de Döviz Kuru Oynaklığının Modellenmesi: Ampirik Bir Araştırma. İktisat Politikası Araştırmaları Dergisi. 2023;10(2):435-455. https://doi.org/10.26650/JEPR1217028


ABNT

Kutlu Horvath, S.; Yurttagüler, İ.M. Türkiye’de Döviz Kuru Oynaklığının Modellenmesi: Ampirik Bir Araştırma. İktisat Politikası Araştırmaları Dergisi, [Publisher Location], v. 10, n. 2, p. 435-455, 2023.


Chicago: Author-Date Style

Kutlu Horvath, Sinem, and İpek M. Yurttagüler. 2023. “Türkiye’de Döviz Kuru Oynaklığının Modellenmesi: Ampirik Bir Araştırma.” İktisat Politikası Araştırmaları Dergisi 10, no. 2: 435-455. https://doi.org/10.26650/JEPR1217028


Chicago: Humanities Style

Kutlu Horvath, Sinem, and İpek M. Yurttagüler. Türkiye’de Döviz Kuru Oynaklığının Modellenmesi: Ampirik Bir Araştırma.” İktisat Politikası Araştırmaları Dergisi 10, no. 2 (Dec. 2024): 435-455. https://doi.org/10.26650/JEPR1217028


Harvard: Australian Style

Kutlu Horvath, S & Yurttagüler, İM 2023, 'Türkiye’de Döviz Kuru Oynaklığının Modellenmesi: Ampirik Bir Araştırma', İktisat Politikası Araştırmaları Dergisi, vol. 10, no. 2, pp. 435-455, viewed 4 Dec. 2024, https://doi.org/10.26650/JEPR1217028


Harvard: Author-Date Style

Kutlu Horvath, S. and Yurttagüler, İ.M. (2023) ‘Türkiye’de Döviz Kuru Oynaklığının Modellenmesi: Ampirik Bir Araştırma’, İktisat Politikası Araştırmaları Dergisi, 10(2), pp. 435-455. https://doi.org/10.26650/JEPR1217028 (4 Dec. 2024).


MLA

Kutlu Horvath, Sinem, and İpek M. Yurttagüler. Türkiye’de Döviz Kuru Oynaklığının Modellenmesi: Ampirik Bir Araştırma.” İktisat Politikası Araştırmaları Dergisi, vol. 10, no. 2, 2023, pp. 435-455. [Database Container], https://doi.org/10.26650/JEPR1217028


Vancouver

Kutlu Horvath S, Yurttagüler İM. Türkiye’de Döviz Kuru Oynaklığının Modellenmesi: Ampirik Bir Araştırma. İktisat Politikası Araştırmaları Dergisi [Internet]. 4 Dec. 2024 [cited 4 Dec. 2024];10(2):435-455. Available from: https://doi.org/10.26650/JEPR1217028 doi: 10.26650/JEPR1217028


ISNAD

Kutlu Horvath, Sinem - Yurttagüler, İpekM.. Türkiye’de Döviz Kuru Oynaklığının Modellenmesi: Ampirik Bir Araştırma”. İktisat Politikası Araştırmaları Dergisi 10/2 (Dec. 2024): 435-455. https://doi.org/10.26650/JEPR1217028



ZAMAN ÇİZELGESİ


Gönderim09.12.2022
Kabul17.03.2023
Çevrimiçi Yayınlanma02.08.2023

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.