Araştırma Makalesi


DOI :10.26650/JGEOG411356   IUP :10.26650/JGEOG411356    Tam Metin (PDF)

Dedegöl Dağı’ndaki Glasiyal Sirklerin Morfometrik Özellikleri

Zeynel ÇılğınCihan Bayrakdar

Türkiye’nin güneybatısında, Batı Toroslar dağ kuşağında yer alan Dedegöl Dağı’nda (2992 m) bulunan 30 glasiyal sirkin morfometrik özelliklerinin belirlenmesinin hedeflendiği bu çalışmada, sirklerin bakı, yükselti, eğim, boyut, şekil özelliklerinin analizi ve gelişim aşamalarına göre sınıflandırılması morfometrik parametreler çerçevesinde yapılmıştır. Sirkler temelde, buzul öncesi topografya, yükselti ve bakı etkisine, kısmen de lokal tektonik ve jeolojik yapıya bağlı olarak gelişmiş ve farklı özellik kazanmışlardır. Sirklerin dörtte üçüne yakın bölümü (73,3), güneş radyasyonuna daha az maruz kalan K, KD ve KB yönlerde gelişmiştir. Sirklerin ortalama taban yükseltisi 2543 m olup, kuzeye bakan yamaçlarda sirkler daha düşük kotlarda gelişme imkanı bulmuşlardır. Sirklerin morfometrik ölçümlerinden, ortalama 600 m uzunluk, 534 m genişlik ve 0,27 km² alan değerleri elde edilmiş, sirk uzunluğunun genişlikten biraz daha fazla olduğu görülmüştür. Buzul vadisi başlangıç noktasında, buzul vadisi yamaçlarında ve buzul vadisinden bağımsız noktalarda gelişim gösteren sirkler; sirk teknesi, basit, basamaklı ve birleşik sirk formunda olmak üzere farklı şekilsel özelliklere sahip olmuşlardır. Sahada iyi gelişmiş 11 sirk mevcutken, diğer 19 sirkin ya iyi gelişmemiş ya da orta derecede gelişmiş oldukları belirlenmiştir. Buzullaşmaların ilk başladığı dönemde, uygun lokalitede bulunan sirklerin pozitif geri besleme ile daha hızlı gelişim göstererek iyi gelişmiş olgun sirklere dönüştüğü değerlendirilmiştir. 

DOI :10.26650/JGEOG411356   IUP :10.26650/JGEOG411356    Tam Metin (PDF)

Morphometric Characteristics of the Glacial Cirques on Mount Dedegöl

Zeynel ÇılğınCihan Bayrakdar

This study investigates the morphometric characteristics of 30 glacial cirques developed on Mount Dedegöl (2992 m) in the western Taurus mountain belt of southwestern Turkey. The elevation, slope, size, and shape characteristics of the cirques are analyzed and classifieded according to their developmental stages based on morphometric parameters. The development of cirques and their distinctive features are basically due to the pre-glacial topography, elevation, and aspect, and partly due to the local tectonic and geological structures. Nearly three-quarter of the cirques (73.3%) were developed in the N, NE, and NW aspects, which area less exposed to solar radiation. The average floor altitude of the cirques is 2543 m, and on the north-facing slopes, the cirques grew at lower elevations. From the morphometric measurements of the cirques, their mean length, width, and area are 600 m, 534 m, and 0.27 km², respectively, revealing that the lengths of most cirques are slightly larger than the corresponding widths. The cirques have distinctive features regarding forms, as they exist as troughs or simple, staircase, or compound cirques, and they are located at the head or slopes of the glacial valleys, or on an area isolated from the valley. We assessed and classified the cirques according to their developmental stages. The assessment results show that there are 11 well-developed cirques in the mountain and the remaining 19 are either moderately or poorly developed. The evaluation also shows that at the onset of the glaciations, the appropriately located cirques developed into mature cirques because of the facilitative environment. 


GENİŞLETİLMİŞ ÖZET


This study investigates the morphometric characteristics of 30 glacial cirques on Mount Dedegöl (2992 m) in southwestern Turkey. The elevation, slope, size, and shape characteristics of the cirques are analyzed and classified according to their developmental stages based on morphometric parameters. Mount Dedegöl is situated in the west of Beysehir Lake in a sub-region called The Lakes District (Göller Yöresi) in the Mediterranean Basin. The mountain, as a part of the Western Taurus orogenic belt, extends from south to north. It approximately has a length of 12 km in the north––south direction and a width of 5––6 km in the east––west direction. The exposed bedrocks in the mountain massif are thick carbonate deposits of the Mesozoic era. The glacial erosional areas corresponding to the high sections of the mountain consist of completely massive limestones, mainly Dipoyraz Formation. Because of the glaciations that occurred during Quaternary cold periods, the higher sections of the Mount Dedegöl have evidences of erosional and depositional land forms of glacial topography. Glacier valleys over 7 km long, numerous cirques, and moraine deposits are evidences of the Pleistocene glaciation. The cirques are the most prominent glacial landform of all the six glaciated areas on Mount Dedegöl. They are usually located in the head of the glacier valley, and the glacier valleys begin with one or more cirques. Morphometric analyses of the cirques are carried out in detail in the study area, using modified forms of the methods created by Evans and Cox (1974; 1995) and Evans (2006), which have also been used by various researchers (e.g., Davis, 1999; Hughes, Gibbard, & Woodward, 2007; Marinescu, 2007; Mîndrescu, Evans, & Cox, 2010; Simoni, 2011). The morphometric parameters are based on a set of definitions formulated by Evans and Cox (1974; 1995). The values obtained by the morphometric measurements of the glacial cirques on Mount Dedegöl are mostly within certain limits and are close to the mean values. The morphometric properties of the cirques are discussed separately in terms of elevation, size, slope, and aspect. On Mount Dedegöl, 30 glacial cirques with distinct characteristics have been identified. Cirques were formed and developed in six sub-glaciated areas on the mountain: Sayacak, Kisbe Dere, Elma Dere, Karagöl, Muslu, and Kar Çukuru. The development and differentiation of the cirques are basically due to the pre-glacial topography, altitude, and aspect, and partly due to local tectonic and geological structures. Nearly three-quarter of the cirques (73.3%) were developed in the N, NE, and NW aspects, which area less exposed to solar radiation, thereby facilitating cirque growth. Only two cirques were developed in the SE and W aspects each because of unfavorable conditions, which include the local topographical conditions, ridges orientations, and pre-glacial valleys. The average floor altitude of the all cirques is 2543 m, and on the north-facing slopes, the cirques grew at lower elevations. Four cirques below 2400 m were developed in the north aspect. Cirques facing the SE and W directions were developed on relatively higher elevations. From the morphometric measurements of the cirques, their mean length, width, and area are 600 m, 534 m, and 0.27 km², respectively, revealing that the lengths of most cirques are slightly larger than the corresponding widths. We found that length exceeds width in 19 cirques, while width exceeds length in 9 cirques, and 2 cirques had equal lengths and widths. The cirques have an average area of 0.27 km², which is slightly below the ideal cirque size. The average circularity index for the cirques is 0.76, and13 cirques exceed 0.8. The circularity index is close to the upper limit value (0.8), indicating that the cirques are nearly circular. In the study area, the mean inclination angle of the cirques slopes is 28º, with the floor slope being 13º and the wall slope being 42º. These figures fall in the ideal range. The cirques have cave distinctive features regarding their forms, as they exist as troughs or simple, staircase, or compound cirques, and they are located at the head or slopes of the glacial valley or on an area isolated from the valley. We identified 10 simple cirques, 3 cirque troughs, 8 compound cirques, and 9 staircase cirques. Furthermore, 6 cirques are located at the head of the valleys, 21 on the slopes of the valleys and 3 in isolated areas irrelevant to the glacial valley. We evaluated and classified the cirques according to their developmental stages. The evaluations results show that there are 11 welldeveloped cirques on the mountain, and the remaining 19 are moderately or poorly developed. There is no direct correlation between the developmental stages of the cirques and their elevation. Several well-developed cirques were also grown at relatively low elevations, such as 2300––2400 m. The local factors which influenced the cirques development include prep-glacial topography, aspect, altitude, and geological structure. The evaluations also show that at the onset of the glaciations, the cirques located at the favorable locations developed into mature cirques by growing in a facilitative environment.


PDF Görünüm

Referanslar

  • Alonso, V. (1993) – Análisis de circo glaciares en las cabeceras de los rios Narcea, Ibia y Sil. Cordillera Cantabrica, Cuaternario y Geomorfología, 7 (1-2), Valencia. google scholar
  • Ardos, M. (1974-1977). “Barla Dağı Civarının Jeomorfolojisi ve Barla Dağı'nda Pleistosen Glasyasyonu”, İstanbul Üniv. Coğrafya Enstitüsü Dergisi, İstanbul, Sayı: 20-21, 151-168. google scholar
  • Ardos, M. (1977). “Eğirdir Golü Güneyinin Jeomorfolojisi ve Davras Pleistosen Buzullaşması”, İstanbul Üniv. Coğrafya Enstitüsü Dergisi, İstanbul, Sayı: 22, 99-118. google scholar
  • Bayrakdar, C. (2012). Akdağ Kütlesi'nde (Batı Toroslar) Karstlaşma Buzul İlişkisinin Jeomorfolojik Analizi. İstanbul: İ.Ü Sosyal Bilimler Enst. Basılmamış Doktora Tezi, 1-180. google scholar
  • Bayrakdar, C., Çılğın, Z., Döker, M.F. ve Canpolat, E. (2015). “Evidence of an active glacier in the Munzur Mountains, eastern Turkey”, Turkish J Earth Sci (2014) 23. google scholar
  • Bayrakdar C., Çılğın Z. ve Sarış, F. (2017). Karadag’da Pleyistosen Buzullaşmaları, Batı Toroslar, Türkiye. Türkiye Jeoloji Bülteni / Geological Bulletin of Turkey, 60, 451-469., Doi:10.25288/tjb.360610 (Yayın No: 3773330) google scholar
  • Benn, D.I. and Evans, D.J.A. (1998). Glaciers and Glaciation. London: Arnold. google scholar
  • Bennet, M. and Glasser, N. (2009). Glacial Geology, Ice Sheets and Landforms. UK: Wiley-Blackwell. google scholar
  • Çılğın, Z. (2012), Dedegöl Dağı (Batı Toroslar) Buzul Jeomorfolojisi Etüdü. Doktora Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, 287 sayfa, İstanbul. google scholar
  • Çılğın, Z., (2015). Dedegöl Dağı Kuvaterner buzullaşmaları. Türk Coğrafya Dergisi, Sayı 64:19-37, İstanbul. google scholar
  • Çiner, A., Deynoux, M. and Çörekçioğlu, E. (1999). “Hummocky moraines in the Namaras and Susam Valleys, Central Taurids, SW Turkey”, Quaternary Science Reviews, 18, 659-669. google scholar
  • Çiner, A. (2003a). “Türkiye'nin Güncel Buzulları ve Geç Kuvaterner Buzul Çökelleri”, Türkiye Jeoloji Bülteni, Cilt 46, Sayı 1 55-78 google scholar
  • Çiner, A. (2003b). “Geyikdağ'da (Orta Toroslar) Geç Kuvaterner Buzullaşmasına Ait Morenlerin Sedimanter Fasiyes Analizi ve Ortamsal Yorumu”, Türkiye Jeoloji Bülteni, Cilt 46, Sayı 1. 35-54 google scholar
  • Delannoy, J. J. and Maire, R. (1983). “Le Massif de Dedegöl dağ (Taurus Occidental,Turquie). Recherches de geomorphologie glaciaire et karstique”, Bulletin Association Geographe Français, 491, 43-53. google scholar
  • Doğu, A. F. (1993). “Sandıras dağındaki buzul şekilleri”, Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, Ankara Üniversitesi, 263-274. google scholar
  • Doğu, A. F., Çiçek, I., Gürgen, G. ve Tunçel, H. (1999a). “Akdağ'ın jeomorfolojisi ve bunun beşeri faaliyetler üzerindeki etkisi (Fethiye-Muğla). Ankara Üniversitesi”, Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 7, 95-120. google scholar
  • Doğu, A. F., Çiçek, I., Gürgen, G. ve Tunçel, H. (1999b). “Akdağ (Fethiye-Muğla)'nın glasyal ve karst jeomorfolojisi”, Cumhuriyetin 75. Yıldönümü Yerbilimleri ve Madencilik Kongresi Bildiri Özleri Kitabı, MTA, (s. 63-64). google scholar
  • Dumont, J.F. ve Monod, O. (1976). “Dipoyraz Dağ Masifinin Triyasik Karbonatlı Serisi (Batı Toroslar,Türkiye)”, MTA Dergisi, 87, 26-38. google scholar
  • Erinç, S. (1971). Jeomorfoloji II, Genişletilmiş 2. Baskı. İstanbul Üniversitesi Coğrafya Enstitüsü Yayınları No:23, İstanbul. google scholar
  • Evans, I.S., Cox, N. (1974). Geomorphometry and Operationnal Definition of Cirques, Area, 6 (2), 150 – 153. google scholar
  • Evans, I.S., Cox, N. (1995). The Form of Glacial Cirques in the English Lake District, Cumbria, Zeitschrift für Geomorphologie. 39: 175–202. google scholar
  • Evans, I.S., (1997). Process and form in the erosion of glaciated mountains. In: Stoddart, D.R. (Ed.), Process and Form in Geomorphology. Routledge, London, 145-174 pp google scholar
  • Evans, I.S., (2006). Allometric development of glacial cirque form: geological, relief and regional effects on the cirques of Wales. Geomorphology, 80 (3–4), 245–266., 80 (3–4), 245–266. google scholar
  • Garcia Ruiz, J.M., Villar, A. G., Ortigosa L. ve Bono, M. (1999) – Los circos glaciares en los altos valles del Aragón y del Gállego (Pirineo Central Español). Análisis morfométrico y variaciones espaciales, Cuaternario y Geomorfología, 13 (1-2), Zaragoza-Salamanca. google scholar
  • Haynes, V. (1968). “The influence of glacial erosion and rock structure on corries in Scotland”, Geografiska Annaler, 50 A, 4, 221-234. google scholar
  • Hughes, P.D., Gibbard, P.L.,Woodward, J.C., 2007. Geological controls on Pleistocene glaci-ation and cirque form in Greece. Geomorphology, 88 (3), 242–253. google scholar
  • Köse, O., 2017. Late quaternary glaciations and cosmogenic 36Cl geochronology of mount Dedegöl. İstanbul Teknik Üniversitesi / Avrasya Yerbilimleri Enstitüsü. Basılmamış Yüksek Lisans Tezi. google scholar
  • Lowey, G.W. (1999) – Glaciation, gravel and gold in the Fifty Mile Creek area, west-central Yukon, in Yukon Exploration and Geology (eds. Emond, D.S; Weston, L.H.), Vancouver. google scholar
  • Messerli, B. (1967). “Die eiszeitliche und die gegenwartige Vergletscherung in Mittelmeerraum”, Geographica Helvetica, 22, 105-228. google scholar
  • Mîndrescu, M., Evans, I.S., Cox, N.J., 2010. Climatic implications of cirque distribution in the Romanian Carpathians: palaeowind directions during glacial periods. J. Quat. Sci. 25 (6): 875–888. google scholar
  • Olyphant, G.A. (1981). “Allometry and cirque evolution”, Geological Society of America Bulletin Part I, 92, 679-685 google scholar
  • Özgül, N. (1976). “Torosların Bazı Temel Jeolojik Özellikleri”, Türkiye Jeoloji Kurumu Bülteni. Ankara, 19/1, 65-67. google scholar
  • Planhol, X. de. (1953). “Les formes glaciaires du Sandıras Dağ et la limite des neiges eternelles quaternaires dans le SO de l'Anatolie”, Compte Rendu Sommaire de la Societe Geologique de France, (s. 263-265). google scholar
  • Reber, R., Akcar, N., Yesilyurt, S., Yavuz, V., Tikhomirov, D., Kubik, P.W., Schluchter, C. 2014. Glacier advances in northeastern Turkey before and during the global Last Glacial Maximum. Quaternary Science Reviews, 101, 177-192. google scholar
  • Sarıkaya, M. A., Zreda, M., Çiner, A. and Zweck, C. (2008). “Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling”, Quaternary Science Reviews, 27 (7-8), 769 – 780. google scholar
  • Sarıkaya, M.A., Çiner ve A. and Zreda, M. (2011). “Quaternary Glaciations of Turkey. J. G. Ehlers içinde”, Quaternary Glaciations-Extent and Chronology (s. 393-403). Elsevier. google scholar
  • Sarıkaya, M. (2011). “Türkiye’nin Güncel Buzulları”, D. Ekinci içinde, Fiziki Coğrafya Araştırmaları: Sistematik ve Bölgesel (s. Sayı:6, 527-544, ). İstanbul: Türk Coğrafya Kurumu Yayınları. google scholar
  • Steffanova, P. Ve Mentlık, P. (2007). Comparison of morphometric characteristic of cirques in the Bohemian Forest, Silva Gabreta, 13(3), Vimperk. google scholar
  • Şenel, M., Dalkılıç, H., Gedik, İ., Serdaroğlu, M., Bölükbaşı, S., Bilgin, Z., Uğuz, F., Korucu, M. ve Özgül, N. (1996). “Isparta Büklümü Doğusunda, Otokton ve Allokton Birimlerin Stratigrafisi (Batı Toroslar)”, MTA Dergisi, Ankara, 118, 111-160. google scholar
  • Şenel, M. (1997). 1:100000 ölçekli Türkiye Jeoloji Haritaları No.15 Isparta-J12 Paftası. Ankara: MTA Jeoloji Etütleri Dairesi. google scholar
  • Simoni, S. (2011). Typological and Morphometric Characteristics of the Glacial Cirques in Doamnei River Basin (Făgăraş Massif). Forum Geografic, Volume 10, Issue 1 / June 2011, pp. 35-49. google scholar
  • Trenhaile, A. S. (1976). Cirque Morphometry in the Canadian Cordillera, Annals of the Association of American Geographers, vol.66, no. 3. google scholar
  • Turoğlu, H. (2011). Buzullar ve Buzul Jeomorfolojisi. İstanbul: Çantay Kitabevi. google scholar
  • Yağmurlu, F. ve Şentürk, M. (2005). Güneybatı Anadolu'nun Güncel Tektonik Yapısı. Turkiye Kuvaterner Sempozyumu V, İTÜ.s. 55-61 İstanbul. google scholar
  • Zahno, C., Akcar, N., Yavuz, V., Kubik, P. W., Schluchter, C. 2009. Surface exposure dating of Late Pleistoceneglaciations at the Dedegol Mountains (Lake Beysehir, SW Turkey). Journal of Quaternary Science, 24, 1016-1028. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Çılğın, Z., & Bayrakdar, C. (2018). Dedegöl Dağı’ndaki Glasiyal Sirklerin Morfometrik Özellikleri. Coğrafya Dergisi, 0(36), 27-48. https://doi.org/10.26650/JGEOG411356


AMA

Çılğın Z, Bayrakdar C. Dedegöl Dağı’ndaki Glasiyal Sirklerin Morfometrik Özellikleri. Coğrafya Dergisi. 2018;0(36):27-48. https://doi.org/10.26650/JGEOG411356


ABNT

Çılğın, Z.; Bayrakdar, C. Dedegöl Dağı’ndaki Glasiyal Sirklerin Morfometrik Özellikleri. Coğrafya Dergisi, [Publisher Location], v. 0, n. 36, p. 27-48, 2018.


Chicago: Author-Date Style

Çılğın, Zeynel, and Cihan Bayrakdar. 2018. “Dedegöl Dağı’ndaki Glasiyal Sirklerin Morfometrik Özellikleri.” Coğrafya Dergisi 0, no. 36: 27-48. https://doi.org/10.26650/JGEOG411356


Chicago: Humanities Style

Çılğın, Zeynel, and Cihan Bayrakdar. Dedegöl Dağı’ndaki Glasiyal Sirklerin Morfometrik Özellikleri.” Coğrafya Dergisi 0, no. 36 (Jun. 2025): 27-48. https://doi.org/10.26650/JGEOG411356


Harvard: Australian Style

Çılğın, Z & Bayrakdar, C 2018, 'Dedegöl Dağı’ndaki Glasiyal Sirklerin Morfometrik Özellikleri', Coğrafya Dergisi, vol. 0, no. 36, pp. 27-48, viewed 6 Jun. 2025, https://doi.org/10.26650/JGEOG411356


Harvard: Author-Date Style

Çılğın, Z. and Bayrakdar, C. (2018) ‘Dedegöl Dağı’ndaki Glasiyal Sirklerin Morfometrik Özellikleri’, Coğrafya Dergisi, 0(36), pp. 27-48. https://doi.org/10.26650/JGEOG411356 (6 Jun. 2025).


MLA

Çılğın, Zeynel, and Cihan Bayrakdar. Dedegöl Dağı’ndaki Glasiyal Sirklerin Morfometrik Özellikleri.” Coğrafya Dergisi, vol. 0, no. 36, 2018, pp. 27-48. [Database Container], https://doi.org/10.26650/JGEOG411356


Vancouver

Çılğın Z, Bayrakdar C. Dedegöl Dağı’ndaki Glasiyal Sirklerin Morfometrik Özellikleri. Coğrafya Dergisi [Internet]. 6 Jun. 2025 [cited 6 Jun. 2025];0(36):27-48. Available from: https://doi.org/10.26650/JGEOG411356 doi: 10.26650/JGEOG411356


ISNAD

Çılğın, Zeynel - Bayrakdar, Cihan. Dedegöl Dağı’ndaki Glasiyal Sirklerin Morfometrik Özellikleri”. Coğrafya Dergisi 0/36 (Jun. 2025): 27-48. https://doi.org/10.26650/JGEOG411356



ZAMAN ÇİZELGESİ


Gönderim30.03.2018
Kabul03.05.2018
Çevrimiçi Yayınlanma17.05.2018

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ



İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.