Mektup


DOI :10.26650/IUITFD.1674196   IUP :10.26650/IUITFD.1674196    Tam Metin (PDF)

BÜYÜK DİL MODELLERİ İLE KAROTİS DOPPLER RAPORLARININ SINIFLANDIRILMASI: KISA BİR GÖZLEM

Ali Salbas

DOI :10.26650/IUITFD.1674196   IUP :10.26650/IUITFD.1674196    Tam Metin (PDF)

CLASSIFICATION OF CAROTID DOPPLER REPORTS BY LARGE LANGUAGE MODELS: A BRIEF OBSERVATION

Ali Salbas

Dear Editor,

Large language models (LLMs) are increasingly important in clinical decision support systems and medical education due to their ability to analyse medical texts (1). This brief observation evaluates the performance of four LLMs — ChatGPT-4o (OpenAI), Claude 3.7 Sonnet (Anthropic), Gemini 1.5 Pro (Google DeepMind), and Grok-3 (xAI) — in classifying internal carotid artery (ICA) stenosis according to the Society of Radiologists in Ultrasound (SRU) criteria, using velocity parameters in carotid Doppler ultrasonography (USG) reports (2). A total of 40 USG reports were used, all containing identical velocity data but presented in two distinct formats. Each report included the peak systolic velocity (PSV), end diastolic velocity (EDV), and internal carotid artery/common carotid artery (ICA/CCA) PSV ratio for both the right and left ICA. The first 20 reports included non-directive descriptive statements. In the remaining 20, the same velocity values were retained, but directive phrases such as “plaques not causing significant stenosis” and “no haemodynamically significant stenosis detected” were added.


PDF Görünüm

Referanslar

  • Lecler A, Duron L, Soyer P. Revolutionizing radiology with GPT-based models: Current applications, future possibilities and limitations of ChatGPT. Diagn Interv Imaging 2023;104(6):269-74. google scholar
  • Grant EG, Benson CB, Moneta GL, Alexandrov AV, Baker JD, Bluth EI, et al. Carotid artery stenosis: gray-scale and Doppler US diagnosis—Society of Radiologists in Ultrasound Consensus Conference. Radiology 2003;229(2):340-6. google scholar
  • Biswas M, Saba L, Omerzu T, Johri AM, Khanna NN, Viskovic K, et al. A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: Artificial intelligence framework. J Digit Imaging 2021;34(3):581-604. google scholar
  • Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, et al. Unseen artificial intelligence-deep learning paradigm for segmentation of low atherosclerotic plaque in carotid ultrasound: A multicenter cardiovascular study. Diagnostics (Basel) 2021;11(12):2257. google scholar
  • Sacoransky E, Kwan BYM, Soboleski D. ChatGPT and assistive AI in structured radiology reporting: A systematic review. Curr Probl Diagn Radiol 2024;53(6):728-37. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Salbas, A. (2019). BÜYÜK DİL MODELLERİ İLE KAROTİS DOPPLER RAPORLARININ SINIFLANDIRILMASI: KISA BİR GÖZLEM. İstanbul Tıp Fakültesi Dergisi, 0(0), -. https://doi.org/10.26650/IUITFD.1674196


AMA

Salbas A. BÜYÜK DİL MODELLERİ İLE KAROTİS DOPPLER RAPORLARININ SINIFLANDIRILMASI: KISA BİR GÖZLEM. İstanbul Tıp Fakültesi Dergisi. 2019;0(0):-. https://doi.org/10.26650/IUITFD.1674196


ABNT

Salbas, A. BÜYÜK DİL MODELLERİ İLE KAROTİS DOPPLER RAPORLARININ SINIFLANDIRILMASI: KISA BİR GÖZLEM. İstanbul Tıp Fakültesi Dergisi, [Publisher Location], v. 0, n. 0, p. -, 2019.


Chicago: Author-Date Style

Salbas, Ali,. 2019. “BÜYÜK DİL MODELLERİ İLE KAROTİS DOPPLER RAPORLARININ SINIFLANDIRILMASI: KISA BİR GÖZLEM.” İstanbul Tıp Fakültesi Dergisi 0, no. 0: -. https://doi.org/10.26650/IUITFD.1674196


Chicago: Humanities Style

Salbas, Ali,. BÜYÜK DİL MODELLERİ İLE KAROTİS DOPPLER RAPORLARININ SINIFLANDIRILMASI: KISA BİR GÖZLEM.” İstanbul Tıp Fakültesi Dergisi 0, no. 0 (Jun. 2025): -. https://doi.org/10.26650/IUITFD.1674196


Harvard: Australian Style

Salbas, A 2019, 'BÜYÜK DİL MODELLERİ İLE KAROTİS DOPPLER RAPORLARININ SINIFLANDIRILMASI: KISA BİR GÖZLEM', İstanbul Tıp Fakültesi Dergisi, vol. 0, no. 0, pp. -, viewed 26 Jun. 2025, https://doi.org/10.26650/IUITFD.1674196


Harvard: Author-Date Style

Salbas, A. (2019) ‘BÜYÜK DİL MODELLERİ İLE KAROTİS DOPPLER RAPORLARININ SINIFLANDIRILMASI: KISA BİR GÖZLEM’, İstanbul Tıp Fakültesi Dergisi, 0(0), pp. -. https://doi.org/10.26650/IUITFD.1674196 (26 Jun. 2025).


MLA

Salbas, Ali,. BÜYÜK DİL MODELLERİ İLE KAROTİS DOPPLER RAPORLARININ SINIFLANDIRILMASI: KISA BİR GÖZLEM.” İstanbul Tıp Fakültesi Dergisi, vol. 0, no. 0, 2019, pp. -. [Database Container], https://doi.org/10.26650/IUITFD.1674196


Vancouver

Salbas A. BÜYÜK DİL MODELLERİ İLE KAROTİS DOPPLER RAPORLARININ SINIFLANDIRILMASI: KISA BİR GÖZLEM. İstanbul Tıp Fakültesi Dergisi [Internet]. 26 Jun. 2025 [cited 26 Jun. 2025];0(0):-. Available from: https://doi.org/10.26650/IUITFD.1674196 doi: 10.26650/IUITFD.1674196


ISNAD

Salbas, Ali. BÜYÜK DİL MODELLERİ İLE KAROTİS DOPPLER RAPORLARININ SINIFLANDIRILMASI: KISA BİR GÖZLEM”. İstanbul Tıp Fakültesi Dergisi 0/0 (Jun. 2025): -. https://doi.org/10.26650/IUITFD.1674196



ZAMAN ÇİZELGESİ


Gönderim11.04.2025
Kabul28.04.2025
Çevrimiçi Yayınlanma25.06.2025

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ



İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.