CHAPTER


DOI :10.26650/B/LSB23LSB24.2024.026.004   IUP :10.26650/B/LSB23LSB24.2024.026.004    Full Text (PDF)

Integrated Multi-trophic Aquaculture (Imta) System Model in Safety Food Production

Devrim MemişMuhammad Hanif AzharGökhan TunçelliNuray Erkan

Sustainable food security is crucial to public health and quality of life. Investigating the environmental impacts that may arise from human food’s agricultural and animal production, its processing in the industry, and its delivery to consumers is essential. Establishing food production systems within the ecosystem framework should be a priority to ensure sustainable production. Climate change and environmental pollution are fundamental issues that directly affect food security and safety. The Integrated Multi-Trophic Aquaculture (IMTA) system is an aquaculture production model where different trophic-level aquatic organisms are cultivated together in the same environment, recycling organic and inorganic nutrients. This system provides economic benefits while reducing environmental impact. Turkey is a rapidly growing country in aquaculture. In 2023, Turkey’s aquatic products production reached 1 million 7 thousand 921 tons, with 55% of this production obtained through aquaculture. Advanced and environmentally friendly systems like IMTA will be needed to sustain existing production shortly. Implementing IMTA systems in Turkish waters can increase aquatic product species, quantity, and quality. The IMTA system, aligned with sustainable aquaculture, provides economic, ecological, and social benefits. Socially, the IMTA system can benefit local communities and encourage consumers to accept and purchase the final product. In the future, IMTA systems can enhance food security and become a viable method for ecosystem conservation with their environmentally friendly production approach.


DOI :10.26650/B/LSB23LSB24.2024.026.004   IUP :10.26650/B/LSB23LSB24.2024.026.004    Full Text (PDF)

Güvenli̇ Gıda Üreti̇mi̇nde Entegre Multi̇-trofi̇k Akuakültür (Imta) Si̇stem Modeli̇

Devrim MemişMuhammad Hanif AzharGökhan TunçelliNuray Erkan

Sürdürülebilir gıda güvencesi, toplum sağlığı ve yaşam kalitesini belirleyen önemli bir parametredir. İnsan gıdasının tarımsal ve hayvansal üretiminden başlayarak sanayide işlenmesi ve tüketiciye ulaştırılmasında meydana gelebilecek çevresel etkilerin araştırılması önemli bir konudur. Gıda üretim sistemlerinin ekosistem içerisinde değerlendirilerek oluşturulması, üretimin sürdürülebilir olması için öncelikli konular arasında olmalıdır. İklim değişikliği ve çevre kirliliği, gıda güvenliği ve güvencesini doğrudan etkileyen temel sorunlardır. Entegre multitrofik akuakültür (IMTA) sistemi, farklı trofik seviyelerdeki akuatik canlıların aynı ortamda birlikte yetiştirilmesiyle organik ve inorganik besin maddelerinin geri dönüştürüldüğü bir akuakültür üretim modelidir. Bu sistem, çevresel etkiyi azaltırken ekonomik fayda sağlar. Türkiye, su ürünleri yetiştiriciliğinde hızla büyüyen bir ülkedir. 2023 yılında Türkiye’de su ürünleri üretimi 1 milyon 7 bin 921 ton olarak gerçekleşmiş ve bu üretimin %55’lik kısmı akuakültür yoluyla sağlanmıştır. Mevcut üretimin sürdürülebilirliği için yakın gelecekte IMTA gibi çevreye duyarlı ve gelişmiş sistemlere ihtiyaç olacağı açıktır. IMTA sistemlerinin, Türkiye sularında uygulanmasıyla su ürünleri üretiminde tür, miktar ve kalite yönünden artış sağlanabilir. IMTA sistemi, sürdürülebilir akuakültür kavramına bağlı olarak ekonomik, ekolojik ve sosyal faydalar sağlar. Sosyal açıdan, IMTA sistemi yerel topluma fayda sağlayabilir ve tüketicilerin nihai ürünü kabul etmesini ve satın almasını teşvik edebilir. Gelecekte IMTA sistemleri, çevre dostu üretim şekliyle gıda güvenliğini artırabilir ve ekosistemin korunmasında uygulanabilir bir yöntem haline gelebilir.



References

  • Azhar, M.H., & Memiş, D. (2024). Nutrient removal from rainbow trout juveniles in fish ponds using integrated biofilter duckweed (Lemna minor) and freshwater mussel (Anadonta cygnea).Iranian Journal of Fisheries Sciences Volume 23, Issue 3. google scholar
  • Amalia, R., Rejeki, S., Widowati, L.L., & Ariyati, R.W. (2022). The growth of tiger shrimp (Penaeus mono-don) and its dynamics of water quality in integrated culture. Biodiversitas, 23(1): 593-600. https://doi. org/10.13057/biodiv/d230164 google scholar
  • Babu, A.P.D., Thomas S., Lekshmi, P.S.S., & Sasikumar, G. (2012). Adoption of sustainable capture based aqu-aculture practices by traditional fishermen of Karnataka, Indian Journal of Fisheries, 59(1): 49-52. google scholar
  • Bakhsh, H., & Chopin, T. (2012). A variation on the IMTA theme: a land-based, closed-containment freshwater IMTA system for tilapia and lettuce. Aquaculture Association of Canada, Special Publication, 22: 57 60. google scholar
  • Barrington, K., Chopin, T., & Robinson, S. (2009). Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In D. Soto (ed.). Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper. No. 529. Rome, FAO. pp. 7-46. google scholar
  • Barrington, K., Ridler, N., Chopin, T., Robinson, S., & Robinson, B. (2010). Social aspects of the sustainabi-lity of integrated multitrophic aquaculture. Aquaculture International, 18: 201-211 https://doi.org/10.1007/ s10499-008-9236-0 google scholar
  • Borges, B.A.A., Rocha, J.L., Pinto, P.H.O., Zacheu, T., Chede, A.C., Magnotti, C.C.F, Cerqueira, V.R., & Arana, L.A.V. (2020). Integrated culture of white shrimp Litopenaeus vannamei and mullet Mugil liza on biofloc te-chnology: zootechnical performance, sludge generation, and Vibrio sp. reduction. Aquaculture, 524: 735234. https://doi.org/10.1016/j.aquaculture.2020.735234 google scholar
  • Brito, L.O., Chagas, A.M., Silva, E.P., Soares, R.B., Severi, W., & Galvez, A.O. (2016). Water quality, Vib-rio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated bioflo-csystem with red seaweed Gracilaria birdiae (Greville). Aquaculture Research, 47(3): 940-950 https://doi. org/10.1111/are.12552 google scholar
  • Chopin T. (2013). Aquaculture, Integrated Multi-Trophic (IMTA) In book: Encyclopedia of Sustainability Science and Technology. Editors: R.A. Meyers. Publisher: pp. 542-564. New York, Springer. https://doi. org/10.1007/978-1-4419-0851-3_173 google scholar
  • Chopin T., MacDonald, B., Robinson, S., Cross S., Pearce, C., Knowler, D., Noce, A., Reid G., Cooper, A., Spe-are, D., Burridge, L., Crawford, C., Sawhney, M., Pee Ang, K., Backman, C., & Hutchinson, M. (2013). The Canadian Integrated Multi-Trophic Aquaculture Network (CIMTAN)-A Network for a new era of ecosystem responsible aquaculture. Fisheries Magazine, 38(7): 297-308. https://doi.org/10.1080/03632415.2013.791285 google scholar
  • Chopin, T. (2006). Integrated multi-trophic aquaculture. What it is and why you should care... and don’t confuse it with polyculture. Northern Aquaculture, 12(4): 4. google scholar
  • Chopin, T., Buschmann, A.H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G.P., Zertuche-Gonzalez, J.A., Yarish, C., & Neefus, C. (2001). Integrating seaweeds into marine aquaculture systems: A key towards sustainability. Journal of Phycology, 37: 975-986. https://doi.org/10.1046/j.1529-8817.2001.01137.x google scholar
  • Chopin, T., Cooper, J.A., Reid, G.K., Cross, S., & Moore, C. (2012). Open-water Integrated Multi-Trophic Aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4: 209-220. https://doi.org/10.1111/j.1753-5131.2012.01074.x google scholar
  • Chopin, T., Murray, S.A. & Bakhsh, H.K. (2016). Freshwater IMTA- Developing Integrated Multi-Trophic Aquaculture systems for commercial salmon hatcheries. Hatchery International, 17(1): 31. google scholar
  • Chopin, T., Troell, M, Reid, G.K., Knowler, D., Robinson, S.M.C., Neori, A., Buschmann, A.H., Pang, S.J., & Fang, J., (2010). Integrated Multi-Trophic Aquaculture (IMTA)- a responsible practice providing diversified seafood products while rendering biomitigating services through its extractive components. In: Franz N, Schmidt C-C (eds) Proceedings OECD Workshop ‘Advancing the Aquaculture Agenda: Policies to Ensure a Sustainable Aquaculture Sector’, Paris, 15-16 April 2010, pp. 195-217. Organization for Economic Co-o-peration and Development, Paris. https://doi.org/10.1787/9789264088726-15-en google scholar
  • Çöteli, F.T. (2021). Ürün Raporu Su Ürünleri. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü Yayın No: 338. ISBN: 978-605-7599-73-5 google scholar
  • Cunha, M.E., Quental-Ferreira, H., Parejo, A., Gamito, S., Ribeiro, L., Moreira, M., Monteiro, I., Soares, F., & Pousao-Ferreira, P. (2019). Understanding the individual role of fish, oyster, phytoplankton and mac-roalgae in the ecology of integrated production in earthen ponds. Aquaculture, 512: 734297. https://doi. org/10.1016/j.aquaculture.2019.734297 google scholar
  • Dale, V.H., Joyce, L.A., & Mc Nulty, S. (1994). Sustainable development of forest ecosystems. Journal of Sustainable Forestry, 2(1): 3-23 google scholar
  • David, F.S., Proenca, D.C., & Valenti, W.C. (2017). Nitrogen budget in integrated aquaculture systems with Nile tilapia and Amazon River prawn. Aquaculture International, 25: 1733-1746. https://doi.org/10.1007/ s10499-017-0145-y google scholar
  • Demircan, D., Ekici, A., Tuncelli, G., Tinkir, M., Keskin, I., & Memis, D. (2022). Using the thick-shelled river mussel (Unio crassus) filtering ability for water treatment process in aquaculture systems: an in vitro study on removal of the bacteria from the water. Aquatic Sciences and Engineering, 37(4): 212-219. DOI: google scholar
  • Espinos, F.J. (2011). Introduction: the need for diversification in achieving sustainable aquaculture in book Di-versification in aquaculture: A tool for sustainability. Spanish Ministry of Environmental, Rural and Marine Affairs. ISBN: 978-84-491-1122-8. google scholar
  • Fang, J., Zhang, J., Xiao, T., Huang, D., & Liu, S. (2015). Integrated multi-trophic aquaculture (IMTA) in Sang-gou Bay, China. Aquaculture Environment Interactions, 8: 201-2 Ferreira, J.G., Saurel, C., & Ferreira, J.M., (2012). Cultivation of gilthead bream in monoculture and integrated multi-trophic aquaculture. Analysis of production and environmental effects by means of the FARM model. Aquaculture, 359: 23-34. https://doi. org/10.1016/j.aquaculture.2012.06.015 google scholar
  • FAO (2008). Building an ecosystem approach to aquaculture. Fisheries and Aquaculture Proceedings No:14. 232 pp. Rome. ISBN 978-92-5-106075-9. google scholar
  • FAO (2010). Aquaculture development. 4. Ecosystem approach to aquaculture. FAO Technical Guidelines for Responsible Fisheries No. 5, Suppl. 4. 53 pp. Rome. ISBN 978-92-5-106650-8. google scholar
  • FAO, (2018). The State of World Fisheries and Aquaculture 2018- Meeting the sustainable development goals. Rome. ISBN 978-92-5-130562-1. google scholar
  • FAO (2022). Integrated multitrophic aquaculture: lessons from China. Bangkok, Thailand. google scholar
  • Firdaus M, Indriana, L. F., Dwiono, S. A. P. & Munandar H. (2016). Konsep dan proses alih teknologi budidaya terpadu teripang pasir, bandeng dan rumput laut. Seminar Nasional Technopreneurship dan Alih Teknologi, 51-62. google scholar
  • Flickinger, D.L., Dantas, D.P., Proença, D.C., David, F.S., & Valenti, W.C. (2019). Phosphorus in the culture of the Amazon River prawn (Macrobrachium amazonicum) and tambaqui (Colossoma macropomum) farmed in monoculture and in integrated multitrophic systems. The Journal of the World Aquaculture Society, 2019: 1-22. https://doi.org/10.1111/jwas.12655 google scholar
  • Franchini, A.C., Costa, G.A., Pereira, S.A., Valenti, W.C., & Moraes- Valenti, P. (2020). Improving production and diet assimilation in fish-prawn integrated aquaculture, using Iliophagus species. Aquaculture, 521: 735048. https://doi.org/10.1016/j.aquaculture.2020.735048 google scholar
  • Gempesaw, C.M., Bacon, J.R., Wessells, C.R. & Manalo, A. (1995). Consumer perceptions of aquaculture products. American Journal of Agricultural Economics, 77: 1306-1312. https://doi.org/10.2307/1243366 google scholar
  • Giangrande, A., Pierri, C., Arduini, D., Borghese, J., Licciano, M., Trani, R. & Longo, C. (2020). An innovative IMTA system: Polychaetes, sponges and macroalgae co-cultured in a Southern Italian in-shore maricul-ture plant (Ionian Sea). Journal of Marine Science and Engineering, 8(10): 1-24. https://doi.org/10.3390/ jmse8100733 google scholar
  • Glenn, H., & White, H. (2007). Legal Traditions, Environmental Awareness, and a Modern Industry: Compara-tive Legal Analysis and Marine Aquaculture. Ocean Development and International Law, 38: 71-99. https:// doi.org/10.1080/00908320601071389 google scholar
  • Goada, AMA., Essa, MA., Hassaan, MS., & Sharawy, Z. (2015). Bio economic features for aquapo-nic systems in Egypt. Turkish Journal of Fisheries and Aquatic Sciences, 15: 531-538. https://doi.or-g/10.4194/1303-2712-v15_2_40 google scholar
  • Granada, L., Sousa, N., Lopes, S., & Lemos, M.F.L. (2016). Is integrated multitrophic aquaculture the solution to the sectors’ major challenges?- a review. Reviews in Aquaculture, 8(3): 283-300. https://doi.org/10.1111/raq.12093 google scholar
  • Güntay, N. (2023). Çevre güven(siz)liğine gıda güvenliği ekseninde bakmak: Güvenlikte domino etkisi. Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, 14(1): 39-55. google scholar
  • Hossain, A., Senff, P., & Glaser, M. (2022). Lessons for coastal applications of IMTA as away towards sustainab-le development: A review. Applied Sciences, 12: 11920. https://doi.org/10.3390/app122311920 google scholar
  • Jaeger, C., & Aubin, J. (2018). Ecological intensification in multitrophic aquaculture ponds: an experimental approach. Aquatic Living Resources, 31: 36. https://doi.org/10.1051/alr/2018021 google scholar
  • Kibria, A.S.M. & Haque M.M. (2018). Potentials of integrated multi- trophic aquaculture (IMTA) in freshwater ponds in Bangladesh. Aquaculture Reports, 11: 8-16. https://doi.org/10.1016/j.aqrep.2018.05.004 google scholar
  • Knowler, D., Chopin, T., Martınez-Espineira, R., Neori, A., Nobre, A., Noce, A. & Reid, G. (2020). The econo-mics of integrated multitrophic aquaculture: Where are we now and where do we need to go? Reviews in Aquaculture, 12(3): 1579-1594. https://doi.org/10.1111/raq.12399 google scholar
  • Kocataş, A. (1996). Ekoloji ve Çevre Biyolojisi. Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, Ders Kitabı Dizini Yayın No: 20, Bornova-İzmir. google scholar
  • Magondu, E.W., Fulanda, B.M., Munguti, J.M. & Mlewa, C.M. (2021). Toward integration of sea cucumber and cockles with culture of shrimps in earthen ponds in Kenya. The Journal of the World Aquaculture Society, 53(5): 948-962. https://doi.org/10.1111/jwas.12861 google scholar
  • Marques, H.L.A., New, M.B., Boock, M.V., Barros, H.P., Mallasen, M. & Valenti, W.C. (2016). Integrated fres-hwater prawn farming: State-of-the-art and future potential. Reviews in Fisheries Science and Aquaculture, 24(3), 264-293. https://doi.org/10.1080/23308249.2016.1169245 google scholar
  • Martmez-Porchas, M., Martmez-Cordova, L.R., Porchas-Cornejo, M.A. & Lopez-EHas, J.A. (2010). Shrimp pol-yculture: a potentially profitable, sustainable, but uncommon aquacultural practice. Reviews in Aquaculture, 2: 73-85. https://doi.org/10.1111/j.1753-5131.2010.01023.x google scholar
  • Memiş, D. (2010). Deniz Balıkları Yetiştiriciliği. Filiz Kitabevi, Sayfa 220. İstanbul. ISBN:9789753683289 google scholar
  • Molloy, S.D., Pietrak, M.R., Bouchard, D.A. & Bricknell, I. (2011). Ingestion of Lepeophtheirus salmonis by the blue mussel Mytilus edulis. Aquaculture, 311: 61-64. https://doi.org/10.1016/j.aquaculture.2010.11.038 google scholar
  • Nath, K., Munilkumar, S., Patel, A.B., Kamilya, D., Pandey, P.K. & Banerjee Sawant, P. (2021). Lamellidens and Wolffia canopy improves growth, feed utilization and welfare of Labeo rohita (Hamilton, 1822) in integrated multitrophic freshwater aquaculture system. Aquaculture, 534: 736207. https://doi.org/10.1016/j. aquaculture.2020.736207 google scholar
  • New, M.B., & Valenti, W.C. (2017). Tilapia-macrobrachium polyculture. In P. W. Perschbacher & R. R. Stickney (Eds.), Tilapia in Intensive Co-culture (pp. 156-185). Chichester UK: Wiley. https://doi. org/10.1002/9781118970652.ch11 google scholar
  • Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939): 419-422.https://doi.org/10.1126/science.1172133 google scholar
  • Palmer, A.M., Bernhardt, E.S., Chorneskyi E.A., Collins, S.I., Dobson, A.P., Duke, C.S., Gold, B.D., Jacob-son, R.B., Kingsland, S.E., Kranz, R.H., Mappin, M.J., Martinez, M.L., Micheli, F., Morse, J.L., Pace, M.L., Pascual, M., Palumbi, S.S., Reichman, IJ., Townsend, A.R., Turner, M. (2005). Ecological cience and sustainability for 21 st century. Frontiers in Ecology and the Environment, 3(1): 4-11. https://doi. org/10.1890/1540-9295(2005)003[0004:ESASFT]2.0.CO;2 google scholar
  • Paolacci, S., Stejskal, V., Toner, D., & Jansen, M.A.K. (2022). Wastewater valorisation in an integrated mul-titrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species. Environmental Pollution, 302: 119059. https://doi.org/10.1016/j.envpol.2022.119059 google scholar
  • Poli, M.A., Legarda, E.C., de Lorenzo, M.A., Martins, M.A., & Vieira, F.N. (2019). Pacific white shrimp and Nile tilapia integrated in a biofloc system under different fish-stocking densities. Aquaculture, 498: 83-89. https://doi.org/10.1016/j.aquaculture.2018.08.045 google scholar
  • Reid, G.K., & Moccia, R.D. (2007). Estimating aquatic phosphorus concentrations 30 metres down-current from a rainbow trout cage array. Journal of Environmental Monitoring, 9: 814-821. https://doi.org/10.1039/ b703585c google scholar
  • Reid, G.K., Chopin, T., Robinson, S.M.C., Azevedo, P., Quinton, M., & Belyea, E. (2013). Weight ratios of the kelps, Alaria esculenta and Saccharina latissima, required to sequester dissolved inorganic besin elements and supply oxygen for Atlantic salmon, Salmo salar, in Integrated Multi-Trophic Aquaculture systems. Aquaculture, 408: 34-46. https://doi.org/10.1016/j.aquaculture.2013.05.004 google scholar
  • Rejeki, S., Ariyati, R.W., & Widowati, L.L. (2016). Application of integrated multi tropic aquaculture concept in an abraded brackish water pond. Jurnal Teknologi, 78(4-2): 227-232. https://doi.org/10.11113/jt.v78.8213 google scholar
  • Ridler, C.B. (2011). A potential conflict between economic and environmental sustainability, a case study. Ma-naging sustainability? In Proceedings of the 12th Management International Conference Portoroz, Slovenia, 23-26 November 2011. google scholar
  • Ross, L.G., Telfer, T.C., Falconer, L., Soto, D., Aguilar-Manjarrez, J., Asmah, R., Bermudez, J., Beveridge, M. C.M., Byron, C. J., Clement, A., Corner, R., Costa-Pierce, B.A., Cross, S., De Wit, M., Dong, S., Ferreira, J.G., Kapetsky, J.M., Karakassis, I., Leschen, W., Little, D., Lundebye, A.-K., Murray, F.J., Phillips, M., Ramos, L., Sadek, S., Scott, P.C., Valle-levinson, A., Waley, D., White, P.G. & Zhu, C. (2013). Carrying capacitiesand site selection within the ecosystem approach to aquaculture. In L.G. Ross, T.C. Telfer, L. Fal-coner, D. Soto & J. Aguilar-Manjarrez, eds. Site selection and carrying capacities forinland and coastal aqu-aculture, pp. 19-46. FAO/Institute of Aquaculture, University of Stirling, Expert Workshop, 6-8 December 2010. Stirling, the United Kingdom of GreatBritain and Northern Ireland. FAO Fisheries and Aquaculture Proceedings No. 21. 282 pp. Rome. google scholar
  • Samocha, T.M., Fricker, J., Ali, A.M., Shpigel, M., & Neori, A. (2015). Growth and nutrient uptake of the mac-roalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multitrophic Aquaculture (IMTA) system. Aquaculture, 446: 263-271. https://doi.org/10.1016/j.aquaculture.2015.05.008 google scholar
  • Schmidt, G., Espinos, F., Ruiz, F., Segarra, M., Mananos, E., Munoz, J. L., Soler, E., Chrivella, J., Dove, C., Barerra, R., Lacomba, T., Balasch, S., Tejedor, J. L., Lopez, J., Santiago, J. M., Ambrosio, L., & Ojeda, J., (2011). Diversification in Aquaculture: A Tool for Sustainability. Spanish Ministry of Environmental, Rural and Marine Affairs, Publications Centre, Madrid. google scholar
  • Shpigel, M., Ari, T., Ben Shauli, L., Odintsov, V., & Ben-Ezra, D. (2016). Nutrient recovery and sludge manage-ment in seabream and grey mullet co-culture in integrated multi-trophic aquaculture (IMTA). Aquaculture, 464: 316-322. https://doi.org/10.1016/j.aquaculture.2016.07.007 google scholar
  • Shpigel, M., Ben Shauli, L., Odintsov, V., Ben-Ezra, D., Neori, A., & Guttman, L. (2018). The sea urchin, Para-centrotus lividus, in an Integrated Multi-Trophic Aquaculture (IMTA) system with fish (Sparus aurata) and seaweed (Ulva lactuca): Nitrogen partitioning and proportional configurations. Aquaculture, 490: 260-269. https://doi.org/10.1016/j.aquaculture.2018.02.051 google scholar
  • Siqueira, Filho, D.A., & Nardi, A.C. (2012). Sustainable development and ecosystem services: concepts and perspectives. Acta Scientiarum Biological Sciences, 34(1): 1-9. google scholar
  • Sri-uam, P., Donnuea, S., Powtongsook, S. & Pavasant, P. (2016). Integrated Multi-Trophic Recirculating Aqu-aculture System for Nile Tilapia (Oreochlomis niloticus). Sustainability, 8: 592. https://doi.org/10.3390/ su8070592 google scholar
  • Stickney, R.R. (2012). Polyculture in Aquaculture. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_176 google scholar
  • Subandar, A., Petrell, R.J., & Harrison, P.J. (1993). Laminaria culture for reduction of dissolved inorganic nitrogen in salmon farm effluent. Journal of Applied Phycology, 5: 455-463. https://doi.org/10.1007/ BF02182738 google scholar
  • Sumoharjo, S., & Maidie, A. (2013). Evaluation on biofilter in recirculating integrated multitrophic aquaculture. International Journal of Science and Engineering, 4(2): 80-85. https://doi.org/10.12777/ijse.4.2.80-85 google scholar
  • Thomas, M., Pasquet, A., Aubin, J., Nahon, S., & Lecocq, T. (2021). When more is more: taking advantage of species diversity to move towards sustainable aquaculture. Biological Reviews, 96(2): 767-784. https://doi. org/10.1111/brv.12677 google scholar
  • Troell, M. (2009). Integrated marine and brackishwater aquaculture in tropical regions: research, implementa-tion and prospects. In D. Soto (ed.). A global review of integrated marine aquaculture. FAO Fisheries and Aquaculture Technical Paper. No. 529. Rome.FAO. 84pp. google scholar
  • Troell, M., Halling, C., Neori, A., Chopin, T., Buschmann, A.H., Kautsky, N., & Yarish, C. (2003). Integra-ted mariculture: Asking the right questions. Aquaculture, 226(1-4): 69-90. https://doi.org/10.1016/S0044-8486(03)00469-1 google scholar
  • TUİK (2021). Su Ürünleri İstatistikleri, Ankara. google scholar
  • Widowati, L.L., Sri-Rejeki, Ariyati, R.W., & Bosma, R.H. (2019). Petunjuk Budidaya Tambak Terpadu (IMTA) Integrated Multi Tropic Aquaculture. PASMI (Project to design Aquaculture Supporting Mangrove Rest-roration in Indonesia). google scholar
  • Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4): 341-348. https://doi.org/10.12714/egejfas.39.4.11 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.