CHAPTER


DOI :10.26650/B/ET07.2021.003.03   IUP :10.26650/B/ET07.2021.003.03    Full Text (PDF)

Data Storage Methods And Applications

Emre Akadal

Although data are required to achieve information, we must have the ability to store and process data to gain some of them. Data could lose their qualification when they are not presented in a suitable format. Organizations tend to store data generated in their inner processes in various sizes. But how many of them can really improve their processes using the data? Also, data management plays a key role in data storage and processing. This chapter compound a few subsections. First, we inspect the historical improvement on data storage. Then, we will discuss relational databases, the most common method of storing structured data, and the advantages and highlights of this database type in detail. Additionally, we will present various information about realizing a new database design, further emphasizing the importance of database design. Afterward, we will handle the approaches for specific situations of some practical problems. We will introduce various methods in terms of size, required computation power, etc. Importantly, we will also discuss the NoSQL concept, which is used in projects with large-scale and often irregular data structures while also considering its advantages in scaling. This concept stands out as it enables document-based data storage and uses an efficient format for cross-platform data communication such as JSON. Lightweight databases will also be mentioned and exemplified to be used in resourceful devices with limited hardware, which are frequently encountered in the field of Internet of Things. Blockchain technology, which is the technology behind a revolutionary development like Bitcoin and stands out with its secure side thanks to its cryptology fundamentals, will also be explained in detail. In addition to all these concepts, we will conclude the section by mentioning how to use reinforced hardware support to provide high performance. Finally, we will emphasize the importance of identifying data and determining the features of the data to choose the correct method.


DOI :10.26650/B/ET07.2021.003.03   IUP :10.26650/B/ET07.2021.003.03    Full Text (PDF)

Veri Saklama Yöntem ve Uygulamaları

Emre Akadal

Bilgiye ulaşmak veriden, veriye ulaşmak ise onu kaydedebilmek ve işleyebilmekten geçmektedir. Veri, kaydedilebilse bile istenilen enformasyonu sunamayacak biçimde olması durumunda niteliğini kaybedecektir. Farklı büyüklükteki organizasyonlar kendi ürettikleri veriyi saklama eğiliminde olurlar. Ancak kaç tanesi bu veriden anlam çıkararak süreçlerini iyileştirebilir? Veriyi kaydetme ve işleme arasındaki sürecin zorluğu biraz da verinin yönetilmesi konusunda yapılan planlarla ilgilidir. Bu bölümde, öncelikle veriyi kaydetmek üzerine tarihsel gelişim ele alınacaktır. Yapılandırılmış veriyi kaydetmenin en yaygın yöntemi olan ilişkisel veritabanları ele alınacak, bu veritabanı türünün avantaj ve öne çıkan özellikleri ayrıntılı olarak ele alınacaktır. Ayrıca veritabanı tasarlamanın önemi de vurgulanarak yeni bir veritabanı tasarımı yapma konusunda çeşitli bilgiler sunulacaktır. Sonrasında da karşılaşılabilecek özel durumlar için kullanılan yaklaşımlardan bahsedilecektir. Çok büyük miktardaki veriden çok küçük miktarda olana, yüksek işlem gücü gerektirenlerden dağıtık veritabanlarına çok çeşitli yöntemler sunulacaktır. Büyük ölçekli ve genellikle düzensiz veri yapılarına sahip projeler için ölçeklendirme konusundaki avantajları da göz önünde bulundurularak NoSQL konsepti ele alınacaktır. Bu konsept, doküman tabanlı veri saklamayı mümkün kılması ve JSON gibi platformlar arası veri iletişimi için etkin bir biçim kullanıyor olması sebebiyle öne çıkmaktadır. Nesnelerin interneti alanında sıkça karşılaşılan, kısıtlı donanıma sahip becerikli cihazlar içerisinde kullanılmak üzere hafif (lightweight) veritabanlarından da bahsedilecek ve örneklendirilecektir. Bitcoin gibi devrimsel bir gelişmenin ardında yatan teknoloji olan ve kriptoloji temelleri sayesinde güvenli yanıyla öne çıkan blokzincir teknolojisi de ayrıntılı olarak açıklanacaktır. Tüm bunların yanında yüksek performans sağlayabilmek için güçlendirilmiş donanım desteğinin nasıl kullanıldığından da bahsedilerek bölüm sonuçlandırılacaktır. Bölüm sayesinde veritabanı kurmadan önce veriyi tanımanın önemi ve yöntem seçimi için verinin hangi özelliklerinin göz önünde bulundurulması gerektiği vurgulanacaktır.



References

  • Akadal, E. (2017). Ham Verilerin Genetik Algoritmalarla İlişkisel Veritabanlarına Dönüştürülmesi ve Bir Uygulama. Istanbul University. google scholar
  • Arefyeva, I., Broneske, D., Campero, G., Pinnecke, M., & Saake, G. (2018). Memory management strategies in CPU/GPU database systems: A survey. Communications in Computer and Information Science, 928, 128-142. https://doi.org/10.1007/978-3-319-99987-6_10 google scholar
  • Bachman, C. W. (1969). Data structure diagrams. ACM SIGMIS Database, 1 (2), 4-10. https://doi. org/10.1145/1017466.1017467 google scholar
  • Bahga, A., & Madisetti, V. K. (2016). Blockchain Platform for Industrial Internet of Things. Journal of Software Engineering and Applications, 09(10), 533-546. https://doi.org/10.4236/jsea.2016.910036 google scholar
  • BreB, S., Heimel, M., Siegmund, N., Bellatreche, L., & Saake, G. (2014). GPU-Accelerated Database Systems: Sur-vey and Open Challenges. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8920, 1-35. https://doi.org/10.1007/978-3-662-45761-0_1 google scholar
  • Çağıltay, N., & Tokdemir, G. (2010). Veritabanı Sistemleri Dersi. google scholar
  • Cattell, R. (2010). Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4), 12-27. https://doi. org/10.1145/1978915.1978919 google scholar
  • Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171-209. https://doi.org/10.1007/s11036-013-0489-0 google scholar
  • Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, 13(6), 377-387. https://doi.org/10.1145/362384.362685 google scholar
  • Crosby, M., Nachiappan, Pattanayak, P., Verma, S., & Kalyanaraman, V. (2016). BlockChain Technology: Beyond Bitcoin. In j2-capital.com. Retrieved from https://j2-capital.com/wp-content/uploads/2017/11/ AIR-2016-Blockchain.pdf google scholar
  • Fagin, R. (1981). A Normal Form for Relational Databases That Is Based on Domains and keys. ACM Transac-tions on Database Systems (TODS), 6(3), 387-415. https://doi.org/10.1145/319587.319592 google scholar
  • Fan, K. (2010). Suvey on nosql. Programmer, 6, 76-78. google scholar
  • Fang, J., Mulder, Y. T. B., Hidders, J., Lee, J., & Hofstee, H. P. (2020). In-memory database acceleration on FPGAs: a survey. VLDB Journal, 29(1), 33-59. https://doi.org/10.1007/s00778-019-00581-w google scholar
  • Gessert, F., Wingerath, W., Friedrich, S., & Ritter, N. (2017). NoSQL database systems: a survey and decisi-on guidance. Computer Science - Research and Development, 32(3-4), 353-365. https://doi.org/10.1007/ s00450-016-0334-3 google scholar
  • Han, J., Haihong, E., Le, G., & Du, J. (2011). Survey on NoSQL database. Proceedings - 2011 6th International Conference on Pervasive Computing and Applications, ICPCA 2011, 363—366. https://doi.org/10.1109/ ICPCA.2011.6106531 google scholar
  • Han, J., Song, M., & Song, J. (2011). A novel solution of distributed memory NoSQL database for cloud compu-ting. Proceedings - 2011 10th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2011, 351-355. https://doi.org/10.1109/iaS.2011.61 google scholar
  • Henry, W. R. (1969). Hierarchical structure for data management. In ieeexplore.ieee.org. Retrieved from https:// ieeexplore.ieee.org/abstract/document/5388345/ google scholar
  • Hoffer, J., Ramesh, V., & Topi, H. (2016). Modern Database Management. Retrieved from https://sites.google. com/site/books183pdf274/PDF-Modern-Database-Management-12th-Edition.pdf google scholar
  • Hou, H. (2017). The application of blockchain technology in E-government in China. 2017 26th Internatio-nal Conference on Computer Communications and Networks, ICCCN 2017. https://doi.org/10.1109/ICC-CN.2017.8038519 google scholar
  • İçer, Y. (2016). Temel Kenar Algılama Algoritmalarının FPGA Üzerinde Gerçeklenmesi. Fırat Üniversitesi. google scholar
  • Lin, Q., Yan, H., Huang, Z., Chen, W., Shen, J., & Tang, Y. (2018). An ID-Based Linearly Homomorphic Sig-nature Scheme and Its Application in Blockchain. IEEE Access, 6, 20632-20640. https://doi.org/10.1109/ ACCESS.2018.2809426 google scholar
  • Nakamoto, S. (2019). Bitcoin: A Peer-to-Peer Electronic Cash System. SSRN Electronic Journal. https://doi. org/10.2139/ssrn.3440802 google scholar
  • Notheisen, B., Cholewa, J. B., & Shanmugam, A. P. (2017). Trading Real-World Assets on Blockchain: An Application of Trust-Free Transaction Systems in the Market for Lemons. Business and Information Systems Engineering, 59(6), 425-440. https://doi.org/10.1007/s12599-017-0499-8 google scholar
  • Riordan, R. (2005). Designing effective database systems. Retrieved from https://dl.acm.org/citation. cfm?id=1050930 google scholar
  • Rowley, J. (2007). The wisdom hierarchy: representations of the DIKW hierarchy. Journal of Information Scien-ce, 33(2), 163-180. https://doi.org/10.1177/0165551506070706 google scholar
  • Satyanarayana Reddy, G., Srinivasu, R., Poorna, M., Rao, C., & Rikkula, S. R. (2010). Data Warehousing, Data Mining, Olap and Oltp Technologies Are Essential Elements To Support Decision-Making Process in In-dustries. International Journal on Computer Science and Engineering, 02(09), 2865-2873. Retrieved from http://pwp.starnetinc.com/larryg/articles.html google scholar
  • Slant. (2020). 10 Best lightweight databases as of 2020 - Slant. Retrieved April 14, 2020, from https://www.slant. co/topics/69/~best-lightweight-databases google scholar
  • Stonebraker, M. (2010). SQL databases v. NoSQL databases. Communications of the ACM, 53(4), 10-11. https:// doi.org/10.1145/1721654.1721659 google scholar
  • Sumathi, S., & Esakkirajan, S. (2007). Fundamentals of Relational Database Management Systems (Studies in Computational Intelligence). google scholar
  • Thusoo, A., Sarma, J. Sen, Jain, N., Shao, Z., Chakka, P., Zhang, N., .. Murthy, R. (2010). Hive - A petabyte sca-le data warehouse using hadoop. Proceedings - International Conference on Data Engineering, 996-1005. https://doi.org/10.1109/ICDE.2010.5447738 google scholar
  • Velde, F. R. (2013). Bitcoin: A primer. Retrieved from www.chicagofed.org. google scholar
  • Zeng, Q., Cao, Q., Zhu, X., & Author, C. (2010). A Complex XML Schema to Map the XML Documents of Distance Education Technical Specifications into Relational Database Xin-hua A Complex XML Schema to Map the XML Documents of Distance Education Technical Specifications into Relational Database. Citeseer. https://doi.org/10.4156/jdcta.vol4 google scholar
  • Zhang, H., Chen, G., Ooi, B. C., Tan, K. L., & Zhang, M. (2015). In-Memory Big Data Management and Pro-cessing: A Survey. IEEE Transactions on Knowledge and Data Engineering, 27(7), 1920-1948. https://doi. org/10.1109/TKDE.2015.2427795 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.