Research Article


DOI :10.26650/acin.1008075   IUP :10.26650/acin.1008075    Full Text (PDF)

Using Deep Learning (CNN, RNN, LSTM, GRU) methods for the prediction of Protein Secondary Structure

Ezgi Çakmakİhsan Hakan Selvi

Proteins play a crucial function in the biological processes of living organisms. Knowing the function of the protein offers significant insight into future biological and medical research. Since a protein’s shape determines its function, it is important to understand the protein’s 3D structure. Although experimental methods such as X-ray crystallography and nuclear magnetic resonance (NMR) have been used to examine the shape of proteins, so far the results have been insufficient. As a result, predicting the 3D structure of proteins is crucial. Determining the 3D structure of a protein from its primary structure is challenging. Therefore, predicting the protein secondary structure becomes important for studying its structure and function. Many emerging methods, including machine learning, as well as deep learning, have been used to predict the secondary structure of proteins and comprise a crucial part of Structural Bioinformatics. The goal of this study is to compare the results generated by predictive models that were created using the four most frequently utilized deep learning methods: convolutional neural networks (CNN), recurrent neural networks (RNN), long short term memory networks (LSTM), and gated recurrent units (GRU). The CB513 dataset was used to train and test these models, and performance evaluation metrics viz. accuracy, f1 score, recall, and precision were applied. The CNN, RNN, LSTM, and GRU models had an accuracy of 82.54%, 82.06%, 81.1%, and 81.48%, respectively.

DOI :10.26650/acin.1008075   IUP :10.26650/acin.1008075    Full Text (PDF)

Derin Öğrenme (CNN, RNN, LSTM, GRU) Kullanarak Protein İkincil Yapı Tahmini

Ezgi Çakmakİhsan Hakan Selvi

Protein, canlı organizmaların biyolojik süreçlerinde çok önemli bir role sahiptir. Proteinin işlevini bilmek, biyoloji ve tıp alanında gelecekteki çalışmalara büyük katkı sağlar. Proteinin fonksiyonunu anlamak için üç boyutlu yapısını anlamak önemlidir. Protein yapısını çözümlemek için X-ışını kristalografisi ve NMR gibi deneysel yöntemler kullanılmasına rağmen, sonuçların yetersiz olduğu kanıtlanmıştır. Bu nedenle, proteinlerin üç boyutlu yapısının tahmini, süreçlerdeki en önemli konulardan biri haline gelmektedir. Birincil yapı olarak bilinen amino asit dizisinden proteinin üç boyutlu şeklinin belirlenmesi zorlu olarak tanımlandığından, ikincil yapının tahmin edilmesi bu konuda önemli bir rol oynamaktadır. Literatürde protein ikincil yapısını tahmin etmek için makine öğrenmesi ve son zamanlarda derin öğrenme gibi birçok yöntem kullanılmıştır. Bu makale, yaygın olarak uygulanan dört derin öğrenme yöntemi olan CNN, RNN, LSTM ve GRU kullanılarak geliştirilen modellerin performanslarının bir karşılaştırmasını sağlamayı amaçlamaktadır. Bu modellerin eğitimi ve test edilmesi amacıyla CB513 veri seti kullanılmış, buna ek olarak doğruluk, f1 skoru, doğruluk ve kesinlik gibi performans değerlendirme ölçütleri uygulanmıştır. CNN, RNN, LSTM ve GRU modellerinin doğruluk oranları sırasıyla %82,54, %82,06, %81,1 ve %81,48’dir.


PDF View

References

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Çakmak, E., & Selvi, İ.H. (2022). Using Deep Learning (CNN, RNN, LSTM, GRU) methods for the prediction of Protein Secondary Structure. Acta Infologica, 6(1), 43-52. https://doi.org/10.26650/acin.1008075


AMA

Çakmak E, Selvi İ H. Using Deep Learning (CNN, RNN, LSTM, GRU) methods for the prediction of Protein Secondary Structure. Acta Infologica. 2022;6(1):43-52. https://doi.org/10.26650/acin.1008075


ABNT

Çakmak, E.; Selvi, İ.H. Using Deep Learning (CNN, RNN, LSTM, GRU) methods for the prediction of Protein Secondary Structure. Acta Infologica, [Publisher Location], v. 6, n. 1, p. 43-52, 2022.


Chicago: Author-Date Style

Çakmak, Ezgi, and İhsan Hakan Selvi. 2022. “Using Deep Learning (CNN, RNN, LSTM, GRU) methods for the prediction of Protein Secondary Structure.” Acta Infologica 6, no. 1: 43-52. https://doi.org/10.26650/acin.1008075


Chicago: Humanities Style

Çakmak, Ezgi, and İhsan Hakan Selvi. Using Deep Learning (CNN, RNN, LSTM, GRU) methods for the prediction of Protein Secondary Structure.” Acta Infologica 6, no. 1 (Sep. 2024): 43-52. https://doi.org/10.26650/acin.1008075


Harvard: Australian Style

Çakmak, E & Selvi, İH 2022, 'Using Deep Learning (CNN, RNN, LSTM, GRU) methods for the prediction of Protein Secondary Structure', Acta Infologica, vol. 6, no. 1, pp. 43-52, viewed 11 Sep. 2024, https://doi.org/10.26650/acin.1008075


Harvard: Author-Date Style

Çakmak, E. and Selvi, İ.H. (2022) ‘Using Deep Learning (CNN, RNN, LSTM, GRU) methods for the prediction of Protein Secondary Structure’, Acta Infologica, 6(1), pp. 43-52. https://doi.org/10.26650/acin.1008075 (11 Sep. 2024).


MLA

Çakmak, Ezgi, and İhsan Hakan Selvi. Using Deep Learning (CNN, RNN, LSTM, GRU) methods for the prediction of Protein Secondary Structure.” Acta Infologica, vol. 6, no. 1, 2022, pp. 43-52. [Database Container], https://doi.org/10.26650/acin.1008075


Vancouver

Çakmak E, Selvi İH. Using Deep Learning (CNN, RNN, LSTM, GRU) methods for the prediction of Protein Secondary Structure. Acta Infologica [Internet]. 11 Sep. 2024 [cited 11 Sep. 2024];6(1):43-52. Available from: https://doi.org/10.26650/acin.1008075 doi: 10.26650/acin.1008075


ISNAD

Çakmak, Ezgi - Selvi, İhsanHakan. Using Deep Learning (CNN, RNN, LSTM, GRU) methods for the prediction of Protein Secondary Structure”. Acta Infologica 6/1 (Sep. 2024): 43-52. https://doi.org/10.26650/acin.1008075



TIMELINE


Submitted11.10.2021
Accepted14.03.2022
Published Online28.04.2022

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.