Research Article


DOI :10.26650/eor.20231079531   IUP :10.26650/eor.20231079531    Full Text (PDF)

The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin

Seçil Özkan AtaCanan AkayEmre Mumcu

Purpose: The aim of this study was to examine the flexural strength of acrylic resin base material incorporated with iron, copper, and titanium nanoparticles. Materials and Methods: Seventy bars of samples (65x10x2.5 mm3 ) were divided into seven groups. Acrylic samples were prepared according to the manufacturer’s instructions. Fe2O3, CuO and TiO2 nanoparticles were manually added in a proportion of 1wt% and 3wt% to the heat-polymerized acrylic resin. The Universal Testing Machine was used for 3-point flexural test of 5 mm/min force. ANOVA and Weibull analyses were used for the statistical analyses. Results: A statistical difference was found between the nanoparticle-added group and the control group. The highest mean value was observed for the 1wt % TiO2 added group, (84.99 MPa) and the lowest value was for the 3wt% CuO added group. (71.32MPa) (p<0,001) The 3wt % Fe2O3 and CuO added groups showed lower values than the control group. Conclusion: The incorporation of TiO2 nanoparticles into acrylic resin in a proportion of 1wt% increased the flexural strength values of the resins. Within the limitations, the nanoparticle addition to acrylic resins could improve the mechanical properties; however, when the percentage of nanoparticle addition increases, the flexural strength values of the acrylic resins decrease.


PDF View

References

  • 1. Vikram S, Gopi Chander N. Effect of zinc oxide nanoparticles on the flexural strength of polymethylmethacrylate denture base resin. Eur Oral Res 2020;54:31-5. google scholar
  • 2. Salman TA, Khalaf HA. The influence of adding of modified ZrO2-TiO2 nanoparticles on certain physical and mechanical properties of heat polymerized acrylic resin. J Bagh College Dentistry 2015;27:33-9. google scholar
  • 3. Jasim BS, İsmail IJ. The effect of silanized alumina nano-fillers addition on some physical and mechanical properties of heat cured polymethyl methacrylate denture base material. J Bagh College of Dentistry 2014;26:18-23. google scholar
  • 4. Kim SH, Watts DC. The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin. J Prosthet Dent 2004;91:274-80. google scholar
  • 5. Jagger DC, Harrison A. The effect of chopped poly(methyl methacrylate) fibers on some properties of acrylic resin denture base material. Int J Prosthodont 1999;12:542-6. google scholar
  • 6. Oyar P, Sana FA, Nasseri B, Durkan R. Effect of green gold nanoparticles synthesized with plant on the flexural strength of heat-polymerized acrylic resin. Niger J Clin Pract 2018;21:1291-5. google scholar
  • 7. Moslehifard E, Robati Anaraki M, Shirkavand S. Effect of adding TiO2 nanoparticles on the SEM morphology and mechanical properties of conventional heat-cured acrylic resin. J Dent Res Dent Clin Dent Prospects 2019;13:234-40. google scholar
  • 8. Sodagar A, Akhoundi MSA, Bahador A, Jalali YF, Behzadi Z, Elhaminejad F, Mirhashemi AH. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dental Press J Orthod 2017;22:67-74. google scholar
  • 9. Agnihotri R, Gaur S, Albin S. Nanometals in dentistry: applications and toxicological implications-a systematic review. Biol Trace Elem Res 2020;197:70-88. google scholar
  • 10. International Organization for Standardization (CH). International Standard ISO 1567, Dentistry-Denture base polymers. Geneve: Washington: International Organization for Standardization; 1999. google scholar
  • 11. Sodagar A, Bahador A, Khalil S, Shahroudi AS, Kassaee MZ. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J Prosthodont Res 2013;57:15-9. google scholar
  • 12. Shi JM, Bao YZ, Huang ZM, Weng ZX. Preparation of poly(methyl methacrylate)/ nanometer calcium carbonate composite by in situ emulsion polymerization. Zhejiang Univ Sci 2004;5,709-13. google scholar
  • 13. Burunkov, J, Denisiuk I, Vorzobova N, Daroczi L, Hegedus Cs, Charnovych S, Kokenyesi S. Fabrication and characterization of gold/acrylic polymer nanocomposites. Eur Polymer J 2013;49:3072-7. google scholar
  • 14. Ellakwa AE, Morsy MA, El-Sheikh AM. Effect of aluminum oxide addition on the flexural strength and thermal diffusivity of heat-polymerized acrylic resin. J Prosthodont 2008;17:439-44. google scholar
  • 15. Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent 2008;36:450-5. google scholar
  • 16. Fujishima M, Takatori H, Tada H. Interfacial chemical bonding effect on the photocatalytic activity of TiO2-SiO2 nanocoupling systems. J Colloid Interface Sci 2011;361:628-31. google scholar
  • 17. Toodehzaeim MH, Zandi H, Meshkani H, Hosseinzadeh Firouzabadi A. The Effect of CuO nanoparticles on antimicrobial effects and shear bond strength of orthodontic adhesives. J Dent Shiraz Univ Med Sci 2018;19:1-5. google scholar
  • 18. Poosti M, Ramazanzadeh B, Zebaıjad M, Javadzadeh P, Naderinasab M, Shakeri MT. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod 2013;35:676-9. google scholar
  • 19. Barbosa DB, de Souza RF, Pero AC, Marra J, Compagnoni MA. Flexural strength of acrylic resins polymerized by different cycles. J Appl Oral Sci 2007;15:424-8. google scholar
  • 20. Vojdani M, Bagheri R, Khaledi AAR. Effects of aluminum oxide addition on the flexural strength, surface hardness, and roughness of heat-polymerized acrylic resin. Journal of Dental Sciences 2012;7:238-44.^ google scholar
  • 21. Lee SY, Lai YL, Hsu TS. Influence of polymerization conditions on monomer elution and microhardness of auto-polymerized polymethyl methacrylate resin. European Journal of Oral Sciences 2002;110:179-83. google scholar
  • 22. Asopa V, Suresh S, Khandelwal M, Sharma V, Asopa SS, Kaira LS. A Comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. The Saudi Journal for Dental Research 2015;6:146-51. google scholar
  • 23. Viwattanatipa N, Jermwiwatkul W, Chintavalakorn R, Kanchanavasita W. Weibull analysis of bond strength of orthodontic buccal tubes bonded to resin composite surface with various techniques. Orthodontic Waves 2010;69:66-74. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Özkan Ata, S., Akay, C., & Mumcu, E. (2022). The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin. European Oral Research, 57(1), 36-40. https://doi.org/10.26650/eor.20231079531


AMA

Özkan Ata S, Akay C, Mumcu E. The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin. European Oral Research. 2022;57(1):36-40. https://doi.org/10.26650/eor.20231079531


ABNT

Özkan Ata, S.; Akay, C.; Mumcu, E. The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin. European Oral Research, [Publisher Location], v. 57, n. 1, p. 36-40, 2022.


Chicago: Author-Date Style

Özkan Ata, Seçil, and Canan Akay and Emre Mumcu. 2022. “The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin.” European Oral Research 57, no. 1: 36-40. https://doi.org/10.26650/eor.20231079531


Chicago: Humanities Style

Özkan Ata, Seçil, and Canan Akay and Emre Mumcu. The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin.” European Oral Research 57, no. 1 (Sep. 2024): 36-40. https://doi.org/10.26650/eor.20231079531


Harvard: Australian Style

Özkan Ata, S & Akay, C & Mumcu, E 2022, 'The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin', European Oral Research, vol. 57, no. 1, pp. 36-40, viewed 14 Sep. 2024, https://doi.org/10.26650/eor.20231079531


Harvard: Author-Date Style

Özkan Ata, S. and Akay, C. and Mumcu, E. (2022) ‘The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin’, European Oral Research, 57(1), pp. 36-40. https://doi.org/10.26650/eor.20231079531 (14 Sep. 2024).


MLA

Özkan Ata, Seçil, and Canan Akay and Emre Mumcu. The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin.” European Oral Research, vol. 57, no. 1, 2022, pp. 36-40. [Database Container], https://doi.org/10.26650/eor.20231079531


Vancouver

Özkan Ata S, Akay C, Mumcu E. The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin. European Oral Research [Internet]. 14 Sep. 2024 [cited 14 Sep. 2024];57(1):36-40. Available from: https://doi.org/10.26650/eor.20231079531 doi: 10.26650/eor.20231079531


ISNAD

Özkan Ata, Seçil - Akay, Canan - Mumcu, Emre. The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin”. European Oral Research 57/1 (Sep. 2024): 36-40. https://doi.org/10.26650/eor.20231079531



TIMELINE


Submitted26.02.2022
Accepted07.07.2022
Published Online05.09.2022

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.