Review Article

DOI :10.26650/experimed.1231893   IUP :10.26650/experimed.1231893    Full Text (PDF)

Delta Secretase and BDNF Signalling in Alzheimer’s Disease

Buse ÜnlüSümeyra IldızDuygu Gezen AkErdinç Dursun

As one of the major contributors of the central nervous system, neurons require neurotrophic factors, which are synthesized from neighbouring cells, for several cellular processes, such as neuronal survival, growth, and differentiation. Neurotrophic factors are categorized into the neurotrophin family, the neuropoietic cytokines, and the glial cell-derived neurotrophic factor. The neurotrophin family comprises four growth factors: nerve growth factor (NGF), neurotrophin-3 (NT3), neurotrophin-4 (NT4), and brain-derived neurotrophic factor (BDNF). One of the best-known neurotrophic factors is BDNF. Its importance is based on its central role in neuronal survival. Entry of the BDNF into the neurons occurs via TrkB receptors, and it is transported to the cell body along microtubules in axons. As it is known in the brains of Alzheimer's patients, the axonal transport of BDNF is destructed via the hyperphosphorylated tau. There are several causes for the hyperphosphorylation of tau. Among them, delta secretase (δ-secretase), a lysosomal cysteine protease, cleaves both amyloid precursor protein (APP) and tau. It is supposed to play an essential role in tau hyperphosphorylation, particularly in the aging brain. In this review, we focus on the activity of δ-secretase, how it leads to tau hyperphosphorylation, and how it disrupts the axonal transport of BDNF in Alzheimer's disease.

PDF View


  • 1. Association As. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509. [CrossRef] google scholar
  • 2. Kumar A, Sidhu J, Goyal A, Tsao JW, Doerr C. Alzheimer Disease (Nursing). StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022. google scholar
  • 3. Ovsepian SV, O’Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Amyloid plaques of Alzheimer’s Disease as hotspots of glutamatergic activity. Neuroscientist 2019; 25(4): 288-97. [CrossRef] google scholar
  • 4. Kuznetsov IA, Kuznetsov AV. How the formation of amyloid plaques and neurofibrillary tangles may be related: a mathematical modelling study. Proc Math Phys Eng Sci 2018; 474(2210): 20170777. [CrossRef] google scholar
  • 5. Zhang Z, Song M, Liu X, Su Kang S, Duong DM, Seyfried NT, et al. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nat Commun 2015; 6: 8762. [CrossRef] google scholar
  • 6. Rodríguez-Martín T, Cuchillo-Ibáñez I, Noble W, Nyenya F, Anderton BH, Hanger DP. Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging 2013; 34(9): 2146-57. [CrossRef] google scholar
  • 7. Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 2021; 167: 382-94. [CrossRef] google scholar
  • 8. Zhang Z, Song M, Liu X, Kang SS, Kwon IS, Duong DM, et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat Med 2014; 20(11): 1254-62. [CrossRef] google scholar
  • 9. Xiang J, Wang ZH, Ahn EH, Liu X, Yu SP, Manfredsson FP, et al. Delta-secretase-cleaved Tau antagonizes TrkB neurotrophic signalings, mediating Alzheimer’s disease pathologies. Proc Natl Acad Sci U S A 2019; 116(18): 9094-102. [CrossRef] google scholar
  • 10. Chen SD, Wu CL, Hwang WC, Yang DI. More Insight into BDNF against neurodegeneration: Anti-apoptosis, anti-Oxidation, and suppression of autophagy. Int J Mol Sci 2017; 18(3): 545 [CrossRef] google scholar
  • 11. Miranda-Lourenço C, Ribeiro-Rodrigues L, Fonseca-Gomes J, Tanqueiro SR, Belo RF, Ferreira CB, et al. Challenges of BDNF-based therapies: From common to rare diseases. Pharmacol Res 2020; 162: 105281. [CrossRef] google scholar
  • 12. Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol 2003; 27(3): 277-324. [CrossRef] google scholar
  • 13. Huang EJ, Reichardt LF. Trk receptors: Roles in neuronal signal transduction. Annu Rev Biochem 2003; 72: 609-42. [CrossRef] google scholar
  • 14. Teng KK, Felice S, Kim T, Hempstead BL. Understanding proneurotrophin actions: Recent advances and challenges. Dev Neurobiol 2010; 70(5): 350-9. [CrossRef] google scholar
  • 15. Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 2003; 91(4): 26770. [CrossRef] google scholar
  • 16. Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 2009; 5(6): 311-22. [CrossRef] google scholar
  • 17. Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T. Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 2007; 85(3): 525-35. [CrossRef] google scholar
  • 18. Lessmann V, Brigadski T. Mechanisms, locations, and kinetics of synaptic BDNF secretion: An update. Neurosci Res 2009; 65(1): 1122. [CrossRef] google scholar
  • 19. Kowianski P, Lietzau G, Czuba E, Waskow M, Steliga A, Morys J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 2018; 38(3): 579-93. [CrossRef] google scholar
  • 20. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, et al. Cleavage of proBDNF by tPA/plasmin is essential for longterm hippocampal plasticity. Science 2004; 306(5695): 487-91. [CrossRef] google scholar
  • 21. Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity-dependent survival of cortical neurons. Science 1994; 263(5153): 1618-23. [CrossRef] google scholar
  • 22. Malik SC, Sozmen EG, Baeza-Raja B, Le Moan N, Akassoglou K, Schachtrup C. In vivo functions of p75(NTR): challenges and opportunities for an emerging therapeutic target. Trends Pharmacol Sci 2021; 42(9): 772-88. [CrossRef] google scholar
  • 23. Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 2002; 67(3): 203-33. [CrossRef] google scholar
  • 24. Lee-Hotta S, Uchiyama Y, Kametaka S. Role of the BDNF-TrkB pathway in KCC2 regulation and rehabilitation following neuronal injury: A mini review. Neurochem Int 2019; 128: 32-8. [CrossRef] google scholar
  • 25. Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 2010; 70(5): 304-22. [CrossRef] google scholar
  • 26. Guo W, Nagappan G, Lu B. Differential effects of transient and sustained activation of BDNF-TrkB signaling. Dev Neurobiol 2018; 78(7): 647-59. [CrossRef] google scholar
  • 27. Zhang Z, Tian Y, Ye K. ô-secretase in neurodegenerative diseases: Mechanisms, regulators and therapeutic opportunities. Transl Neurodegener 2020; 9: 1. [CrossRef] google scholar
  • 28. Dall E, Brandstetter H. Structure and function of legumain in health and disease. Biochimie 2016; 122: 126-50. [CrossRef] google scholar
  • 29. Liu C, Sun C, Huang H, Janda K, Edgington T. Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res 2003; 63(11): 2957-64. google scholar
  • 30. Wang ZH, Liu P, Liu X, Manfredsson FP, Sandoval IM, Yu SP, et al. Delta-secretase phosphorylation by srpk2 enhances its enzymatic activity, provoking pathogenesis in Alzheimer’s Disease. Mol Cell 2017; 67(5): 812-25.e5. [CrossRef] google scholar
  • 31. Xia Y, Wang ZH, Zhang Z, Liu X, Yu SP, Wang JZ, et al. Delta- and beta- secretases crosstalk amplifies the amyloidogenic pathway in Alzheimer’s disease. Prog Neurobiol 2021; 204: 102113. [CrossRef] google scholar
  • 32. Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 2009; 15(3): 112-9. [CrossRef] google scholar
  • 33. Kang SS, Ahn EH, Ye K. Delta-secretase cleavage of Tau mediates its pathology and propagation in Alzheimer’s disease. Exp Mol Med 2020; 52(8): 1275-87. [CrossRef] google scholar
  • 34. Liao J, Chen C, Ahn EH, Liu X, Li H, Edgington-Mitchell LE, et al. Targeting both BDNF/TrkB pathway and delta-secretase for treating Alzheimer’s disease. Neuropharmacology 2021; 197: 108737. [CrossRef] google scholar
  • 35. Wang ZH, Wu W, Kang SS, Liu X, Wu Z, Peng J, et al. BDNF inhibits neurodegenerative disease-associated asparaginyl endopeptidase activity via phosphorylation by AKT. JCI Insight 2018; 3(16): e99007 [CrossRef] google scholar
  • 36. Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M, et al. Can exercise training teach us how to treat Alzheimer’s disease? Ageing Res Rev 2022; 75: 101559. [CrossRef] google scholar
  • 37. Wang ZH, Gong K, Liu X, Zhang Z, Sun X, Wei ZZ, et al. C/EBPß regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer’s disease. Nat Commun 2018; 9(1): 1784. [CrossRef] google scholar
  • 38. Xia Y, Wang ZH, Liu P, Edgington-Mitchell L, Liu X, Wang XC, et al. TrkB receptor cleavage by delta-secretase abolishes its phosphorylation of APP, aggravating Alzheimer’s disease pathologies. Mol Psychiatry 2021; 26(7): 2943-63. [CrossRef] google scholar
  • 39. Basurto-Islas G, Grundke-Iqbal I, Tung YC, Liu F, Iqbal K. Activation of asparaginyl endopeptidase leads to Tau hyperphosphorylation in Alzheimer disease. J Biol Chem 2013; 288(24): 17495-507. [CrossRef] google scholar
  • 40. Basurto-Islas G, Gu JH, Tung YC, Liu F, Iqbal K. Mechanism of tau hyperphosphorylation involving lysosomal enzyme asparagine endopeptidase in a mouse model of brain ischemia. J Alzheimers Dis 2018; 63(2): 821-33. [CrossRef] google scholar
  • 41. Madeira A, Pommet JM, Prochiantz A, Allinquant B. SET protein (TAF1beta, I2PP2A) is involved in neuronal apoptosis induced by an amyloid precursor protein cytoplasmic subdomain. Faseb J 2005; 19(13): 1905-7. [CrossRef] google scholar
  • 42. Liu GP, Wei W, Zhou X, Zhang Y, Shi HH, Yin J, et al. I(2)(PP2A) regulates p53 and Akt correlatively and leads the neurons to abort apoptosis. Neurobiol Aging 2012; 33(2): 254-64. [CrossRef] google scholar
  • 43. Sleigh JN, Rossor AM, Fellows AD, Tosolini AP, Schiavo G. Axonal transport and neurological disease. Nat Rev Neurol 2019; 15(12): 691-703. [CrossRef] google scholar
  • 44. Terenzio M, Schiavo G, Fainzilber M. Compartmentalized signaling in neurons: from cell biology to neuroscience. Neuron 2017; 96(3): 667-79. [CrossRef] google scholar
  • 45. Ye X, Tai W, Zhang D. The early events of Alzheimer’s disease pathology: From mitochondrial dysfunction to BDNF axonal transport deficits. Neurobiol Aging 2012; 33(6): 1122.e1-10. [CrossRef] google scholar
  • 46. Brandt R, Léger J, Lee G. Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 1995; 131(5): 1327-40. [CrossRef] google scholar
  • 47. Cuchillo-Ibanez I, Seereeram A, Byers HL, Leung KY, Ward MA, Anderton BH, et al. Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. Faseb J 2008; 22(9): 3186-95. [CrossRef] google scholar
  • 48. Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, et al. Tau reduction prevents Aß-induced defects in axonal transport. Science 2010; 330(6001): 198. [CrossRef] google scholar
  • 49. Segal RA. Selectivity in neurotrophin signaling: Theme and variations. Annu Rev Neurosci 2003; 26: 299-330. [CrossRef] google scholar
  • 50. Poon WW, Blurton-Jones M, Tu CH, Feinberg LM, Chabrier MA, Harris JW, et al. ß-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 2011; 32(5): 821-33. [CrossRef] google scholar


Copy and paste a formatted citation or use one of the options to export in your chosen format



Ünlü, B., Ildız, S., Gezen Ak, D., & Dursun, E. (2023). Delta Secretase and BDNF Signalling in Alzheimer’s Disease. Experimed, 13(1), 1-7.


Ünlü B, Ildız S, Gezen Ak D, Dursun E. Delta Secretase and BDNF Signalling in Alzheimer’s Disease. Experimed. 2023;13(1):1-7.


Ünlü, B.; Ildız, S.; Gezen Ak, D.; Dursun, E. Delta Secretase and BDNF Signalling in Alzheimer’s Disease. Experimed, [Publisher Location], v. 13, n. 1, p. 1-7, 2023.

Chicago: Author-Date Style

Ünlü, Buse, and Sümeyra Ildız and Duygu Gezen Ak and Erdinç Dursun. 2023. “Delta Secretase and BDNF Signalling in Alzheimer’s Disease.” Experimed 13, no. 1: 1-7.

Chicago: Humanities Style

Ünlü, Buse, and Sümeyra Ildız and Duygu Gezen Ak and Erdinç Dursun. Delta Secretase and BDNF Signalling in Alzheimer’s Disease.” Experimed 13, no. 1 (Jul. 2024): 1-7.

Harvard: Australian Style

Ünlü, B & Ildız, S & Gezen Ak, D & Dursun, E 2023, 'Delta Secretase and BDNF Signalling in Alzheimer’s Disease', Experimed, vol. 13, no. 1, pp. 1-7, viewed 20 Jul. 2024,

Harvard: Author-Date Style

Ünlü, B. and Ildız, S. and Gezen Ak, D. and Dursun, E. (2023) ‘Delta Secretase and BDNF Signalling in Alzheimer’s Disease’, Experimed, 13(1), pp. 1-7. (20 Jul. 2024).


Ünlü, Buse, and Sümeyra Ildız and Duygu Gezen Ak and Erdinç Dursun. Delta Secretase and BDNF Signalling in Alzheimer’s Disease.” Experimed, vol. 13, no. 1, 2023, pp. 1-7. [Database Container],


Ünlü B, Ildız S, Gezen Ak D, Dursun E. Delta Secretase and BDNF Signalling in Alzheimer’s Disease. Experimed [Internet]. 20 Jul. 2024 [cited 20 Jul. 2024];13(1):1-7. Available from: doi: 10.26650/experimed.1231893


Ünlü, Buse - Ildız, Sümeyra - Gezen Ak, Duygu - Dursun, Erdinç. Delta Secretase and BDNF Signalling in Alzheimer’s Disease”. Experimed 13/1 (Jul. 2024): 1-7.


Published Online11.04.2023


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.