Research Article


DOI :10.26650/experimed.1189898   IUP :10.26650/experimed.1189898    Full Text (PDF)

The Effect of Whey Proteins on the Brain and Small Intestine Nitric Oxide Levels: Protein Profiles in Methotrexate-Induced Oxidative Stress

Sümeyye YılmazElif TufanGüzin Göksun SivasBegüm Gürel GökmenErcan DursunDilek ÖzbeyliGöksel ŞenerTuğba Tunalı Akbay

Objectives: The aim of this study was to determine the effects of whey proteins on methotrexate (MTX)-induced brain and small intestine damage. Materials and Methods: 30 Sprague Dawley rats (200-300 g) were divided into four groups: Control, control + whey, MTX, and MTX+whey. MTX was administered at 20 mg/kg (single dose) intraperitoneally to the MTX group rats, and 2 mg/kg of whey protein were administered by oral gavage for 10 days to the whey groups. Lipid peroxidation, glutathione, and nitric oxide (NO) levels, as well as glutathione-S-transferase and superoxide dismutase activities were measured in the brain and small intestine. SDS-polyacrylamide gel electrophoresis of the brain and intestine tissues were also carried out. Results: While MTX treatment caused oxidative damage in the brain and small intestine, whey protein administration ameliorated MTXinduced oxidative stress. MTX administration did not change the brain’s NO level, while an increase in intestinal NO level was detected. Conclusion: MTX induced oxidative stress in the brain and small intestine changed the protein metabolism in these tissues regardless of reduced food intake. Consecutive 10-day administration of whey proteins has shown its therapeutic effect on MTX-induced brain and small intestine oxidative damage.


PDF View

References

  • 1. Hannoodee M, Mittal M. Methotrexate. StatPearls (Internet): StatPearls Publishing; 2021. google scholar
  • 2. Letertre MP, Munjoma N, Wolfer K, Pechlivanis A, McDonald JA, Hardwick RN, et al. A two-way interaction between methotrexate and the gut microbiota of male sprague-dawley rats. J Proteome Res 2020; 19(8): 3326-39. [CrossRef] google scholar
  • 3. Maeda T, Miyazono Y, Ito K, Hamada K, Sekine S, Horie T. Oxidative stress and enhanced paracellular permeability in the small intestine of methotrexate-treated rats. Cancer Chemother Pharmacol 2010; 65(6): 1117-23. [CrossRef] google scholar
  • 4. Jahovic N, Şener G, Çevik H, Ersoy Y, Arbak S, Yeğen BÇ. Amelioration of methotrexate-induced enteritis by melatonin in rats. Cell Biochem Funct. 2004; 22(3): 169-78. [CrossRef] google scholar
  • 5. Miyazono Y, Gao F, Horie T. Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats. Scand J Gastroenterol 2004; 39(11): 1119-27. [CrossRef] google scholar
  • 6. Welbat JU, Naewla S, Pannangrong W, Sirichoat A, Aranarochana A, Wigmore P. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat. Biochem Pharmacol 2020; 178: 114083. [CrossRef] google scholar
  • 7. Vezmar S, Becker A, Bode U, Jaehde U. Biochemical and Clinical Aspects of Methotrexate Neurotoxicity. Chemotherapy 2003; 49(1-2): 92-104. [CrossRef] google scholar
  • 8. Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003; 22(47): 7369-75. [CrossRef] google scholar
  • 9. Tsurui K, Kosakai Y, Horie T, Awazu S. Vitamin A protects the small intestine from methotrexate-induced damage in rats. J Pharmacol Exp Ther 1990; 253(3): 1278-84. google scholar
  • 10. Horie T, Matsumoto H, Kasagi M, Sugiyama A, Kikuchi M, Karasawa C, et al. Protective effect of aged garlic extract on the small intestinal damage of rats induced by methotrexate administration. Planta Med 1999; 65(06): 545-8. [CrossRef] google scholar
  • 11. Corrochano AR, Arranz E, De Noni I, Stuknyte M, Ferraretto A, Kelly PM, et al. Intestinal health benefits of bovine whey proteins after simulated gastrointestinal digestion. J Funct Foods 2018; 49: 52635. [CrossRef] google scholar
  • 12. Sprong RC, Schonewille AJ, van der Meer R. Dietary cheese whey protein protects rats against mild dextran sulfate sodium-induced colitis: role of mucin and microbiota. J Dairy Sci 2010; 93(4): 136471. [CrossRef] google scholar
  • 13. Akal C. Benefits of Whey Proteins on Human Health. Chapter 28; In: Watson RR, Collier RJ, Preedy VR, editors. Dairy in Human Health and Disease Across the Lifespan: Academic Press; 2017. p. 363-72. [CrossRef] google scholar
  • 14. Aykaç A, Becer E, Özbeyli D, Şener G, Başer K. Protective effects of Origanum onites essential oil in the methotrexate-induced rat model: role on apoptosis and hepatoxicity. Rec Nat Prod 2020; 14(6): 395-404. [CrossRef] google scholar
  • 15. Shimizu Y, Hara H, Hira T. Glucagon-like peptide-1 response to whey protein is less diminished by dipeptidyl peptidase-4 in comparison with responses to dextrin, a lipid and casein in rats. Br J Nutr 2021; 125(4): 398-407. [CrossRef] google scholar
  • 16. Ledwozyw A, Michalak J, Stepien A, Kadziolka A. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 1986; 155(3): 275-83. [CrossRef] google scholar
  • 17. Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 1986; 82(3): 51220. [CrossRef] google scholar
  • 18. Habig WH, Jakoby WB. Assays for differentiation of glutathione S-transferases. Methods Enzymol 1981; 77: 398-405. [CrossRef] google scholar
  • 19. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001; 5(1): 62-71. [CrossRef] google scholar
  • 20. Beutler E. Red cell metabolism: a manual of biochemical methods. 3rd edition, New York, 1984. google scholar
  • 21. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680-5. [CrossRef] google scholar
  • 22. Faul F, Erdfelder E, Lang A-G, Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39(2): 175-91. [CrossRef] google scholar
  • 23. Leeanantsaksiri P. Gut-Brain Axis Association to the Brain Function. Inter J Formal Sci: Curr Future Res Trend 2022; 13(1): 167-81. google scholar
  • 24. Nayak RR, Alexander M, Deshpande I, Stapleton-Gray K, Rimal B, Patterson AD, et al. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe 2021; 29(3): 362-77.e11. [CrossRef] google scholar
  • 25. Modun D, Giustarini D, Tsikas D. Nitric oxide-related oxidative stress and redox status in health and disease. Oxidative Medicine and Cellular Longevity, Hindawi; 2014. [CrossRef] google scholar
  • 26. Lanas A. Role of nitric oxide in the gastrointestinal tract. Arthritis Res Ther 2008; 10 Suppl 2(Suppl 2): S4. [CrossRef] google scholar
  • 27. Dijkstra G, van Goor H, Jansen P, Moshage H. Targeting nitric oxide in the gastrointestinal tract. Curr Opin Investig Drugs 2004; 5: 52936. google scholar
  • 28. Cronstein BN, Aune TM. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol 2020; 16(3): 145-54. [CrossRef] google scholar
  • 29. Keri Marshall N. Therapeutic applications of whey protein. Altern Med Rev 2004; 9(2): 136-56. google scholar
  • 30. Walzem R, Dillard C, German JB. Whey components: millennia of evolution create functionalities for mammalian nutrition: What we know and what we may be overlooking. Crit Rev Food Sci Nutr 2002; 42(4): 353-75. [CrossRef] google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Yılmaz, S., Tufan, E., Göksun Sivas, G., Gökmen, B.G., Dursun, E., Özbeyli, D., Şener, G., & Tunalı Akbay, T. (2022). The Effect of Whey Proteins on the Brain and Small Intestine Nitric Oxide Levels: Protein Profiles in Methotrexate-Induced Oxidative Stress. Experimed, 12(3), 113-118. https://doi.org/10.26650/experimed.1189898


AMA

Yılmaz S, Tufan E, Göksun Sivas G, Gökmen B G, Dursun E, Özbeyli D, Şener G, Tunalı Akbay T. The Effect of Whey Proteins on the Brain and Small Intestine Nitric Oxide Levels: Protein Profiles in Methotrexate-Induced Oxidative Stress. Experimed. 2022;12(3):113-118. https://doi.org/10.26650/experimed.1189898


ABNT

Yılmaz, S.; Tufan, E.; Göksun Sivas, G.; Gökmen, B.G.; Dursun, E.; Özbeyli, D.; Şener, G.; Tunalı Akbay, T. The Effect of Whey Proteins on the Brain and Small Intestine Nitric Oxide Levels: Protein Profiles in Methotrexate-Induced Oxidative Stress. Experimed, [Publisher Location], v. 12, n. 3, p. 113-118, 2022.


Chicago: Author-Date Style

Yılmaz, Sümeyye, and Elif Tufan and Güzin Göksun Sivas and Begüm Gürel Gökmen and Ercan Dursun and Dilek Özbeyli and Göksel Şener and Tuğba Tunalı Akbay. 2022. “The Effect of Whey Proteins on the Brain and Small Intestine Nitric Oxide Levels: Protein Profiles in Methotrexate-Induced Oxidative Stress.” Experimed 12, no. 3: 113-118. https://doi.org/10.26650/experimed.1189898


Chicago: Humanities Style

Yılmaz, Sümeyye, and Elif Tufan and Güzin Göksun Sivas and Begüm Gürel Gökmen and Ercan Dursun and Dilek Özbeyli and Göksel Şener and Tuğba Tunalı Akbay. The Effect of Whey Proteins on the Brain and Small Intestine Nitric Oxide Levels: Protein Profiles in Methotrexate-Induced Oxidative Stress.” Experimed 12, no. 3 (Sep. 2024): 113-118. https://doi.org/10.26650/experimed.1189898


Harvard: Australian Style

Yılmaz, S & Tufan, E & Göksun Sivas, G & Gökmen, BG & Dursun, E & Özbeyli, D & Şener, G & Tunalı Akbay, T 2022, 'The Effect of Whey Proteins on the Brain and Small Intestine Nitric Oxide Levels: Protein Profiles in Methotrexate-Induced Oxidative Stress', Experimed, vol. 12, no. 3, pp. 113-118, viewed 9 Sep. 2024, https://doi.org/10.26650/experimed.1189898


Harvard: Author-Date Style

Yılmaz, S. and Tufan, E. and Göksun Sivas, G. and Gökmen, B.G. and Dursun, E. and Özbeyli, D. and Şener, G. and Tunalı Akbay, T. (2022) ‘The Effect of Whey Proteins on the Brain and Small Intestine Nitric Oxide Levels: Protein Profiles in Methotrexate-Induced Oxidative Stress’, Experimed, 12(3), pp. 113-118. https://doi.org/10.26650/experimed.1189898 (9 Sep. 2024).


MLA

Yılmaz, Sümeyye, and Elif Tufan and Güzin Göksun Sivas and Begüm Gürel Gökmen and Ercan Dursun and Dilek Özbeyli and Göksel Şener and Tuğba Tunalı Akbay. The Effect of Whey Proteins on the Brain and Small Intestine Nitric Oxide Levels: Protein Profiles in Methotrexate-Induced Oxidative Stress.” Experimed, vol. 12, no. 3, 2022, pp. 113-118. [Database Container], https://doi.org/10.26650/experimed.1189898


Vancouver

Yılmaz S, Tufan E, Göksun Sivas G, Gökmen BG, Dursun E, Özbeyli D, Şener G, Tunalı Akbay T. The Effect of Whey Proteins on the Brain and Small Intestine Nitric Oxide Levels: Protein Profiles in Methotrexate-Induced Oxidative Stress. Experimed [Internet]. 9 Sep. 2024 [cited 9 Sep. 2024];12(3):113-118. Available from: https://doi.org/10.26650/experimed.1189898 doi: 10.26650/experimed.1189898


ISNAD

Yılmaz, Sümeyye - Tufan, Elif - Göksun Sivas, Güzin - Gökmen, BegümGürel - Dursun, Ercan - Özbeyli, Dilek - Şener, Göksel - Tunalı Akbay, Tuğba. The Effect of Whey Proteins on the Brain and Small Intestine Nitric Oxide Levels: Protein Profiles in Methotrexate-Induced Oxidative Stress”. Experimed 12/3 (Sep. 2024): 113-118. https://doi.org/10.26650/experimed.1189898



TIMELINE


Submitted16.10.2022
Accepted16.11.2022
Published Online27.12.2022

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.