Research Article

DOI :10.26650/experimed.1183293   IUP :10.26650/experimed.1183293    Full Text (PDF)

The Mitochondrial Origins of the Hellenistic Individuals of Ayasuluk Hill

Fatih TepgeçMehmet Görgülü

Objective: The present study aimed to extract ancient DNA from the remains of three individuals from the 4th century BC in order to determine the haplogroups through a mitochondrial DNA study, thus providing information about Anatolian migrations in ancient times. Materials and Methods: For this purpose, the study examined the remains of three bodies found at the bottom of the city walls from the archeological excavations between 2007-2008 and dated to the 4th century BC. After taking anthropometric measurements, the study examined the mitochondrial HVR1 and HVR2 regions by using Sanger sequencing and then used online programs to evaluate the data from the sequencing. Results: As a result of the study, death due to a possible injury from a sharp object was observed on the right femur of one of the three individuals. The maternal haplogroups of the individuals were determined to belong to the T2b group of European origin. Conclusion: The present study obtained genetic information regarding three individuals found at the bottom of the ancient city walls on Ayasuluk Hill. These results will provide important information about the commander of the ruins found on the walls of the Ayasuluk Hill of the ancient city of Ephesus, which constantly changed hands during the Wars of the Diadochi.

PDF View


  • 1. Marciniak S, Perry GH. Harnessing ancient genomes to study the history of human adaptation. Nat Rev Genet 2017; 18(11): 659-74. [CrossRef] google scholar
  • 2. Quintana-Murci L. Genetic, linguistic and archaeological perspectives on human diversity in Southeast Asia. Am J Hum Genet 2002; 71(5): 1253-5. [CrossRef] google scholar
  • 3. De Chadarevian S. Genetic evidence and interpretation in history. BioSocieties 2010; 5(3): 301-5. [CrossRef] google scholar
  • 4. Posth C, Nakatsuka N, Lazaridis I, Skoglund P, Mallick S, Lamnidis TC, et al. Reconstructing the deep population history of Central and South America. Cell 2018; 175(5): 1185-97. [CrossRef] google scholar
  • 5. Moreno-Mayar JV, Vinner L, de Barros Damgaard P, De La Fuente C, Chan J, Spence JP, et al. Early human dispersals within the Americas. Science 2018; 362(6419): eaav2621. [CrossRef] google scholar
  • 6. Feldman M, Master DM, Bianco RA, Burri M, Stockhammer PW, Mittnik A, et al. Ancient DNA sheds light on the genetic origins of early Iron Age Philistines. Sci Adv 2019; 5(7): eaax0061. [CrossRef] google scholar
  • 7. Kaya MA. Anadolu'daki Galatlar ve Galatya tarihi: Ege Üniversitesi; 2000. google scholar
  • 8. Brandstätter A, Niederstätter H, Parson W. Monitoring the inheritance of heteroplasmy by computer-assisted detection of mixed basecalls in the entire human mitochondrial DNA control region. Int J Legal Med 2004; 118(1): 47-54. [CrossRef] google scholar
  • 9. Brandstätter A, Peterson CT, Irwin JA, Mpoke S, Koech DK, Parson W, et al. Mitochondrial DNA control region sequences from Nairobi (Kenya): inferring phylogenetic parameters for the establishment of a forensic database. Int J Legal Med 2004; 118(5): 294-306. [CrossRef] google scholar
  • 10. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature 1981; 290(5806): 457-65. [CrossRef] google scholar
  • 11. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999; 23(2): 147. [CrossRef] google scholar
  • 12. Behar DM, Van Oven M, Rosset S, Metspalu M, Loogväli E-L, Silva NM, et al. A "Copernican" reassessment of the human mitochondrial DNA tree from its root. Am J Hum Genet 2012; 90(4): 675-84. [CrossRef] google scholar
  • 13. Mensforth RP, Latimer BM. Hamann-Todd collection aging studies: Osteoporosis fracture syndrome. Am J Phys Anthropol 1989; 80(4): 461-79. [CrossRef] google scholar
  • 14. Meindl RS, Russell KF, Lovejoy CO. Reliability of age at death in the Hamann-Todd collection: validity of subselection procedures used in blind tests of the summary age technique. Am J Phys Anthropol 1990; 83(3): 349-57. [CrossRef] google scholar
  • 15. içcan MY. A Comparison of the Hamann-Todd and Terry collections. Anthropologie (1962-). 1992; 30(1): 35-40. google scholar
  • 16. Ou C, Moore J, Schochetman G. Use of UV irradiation to reduce false positivity in polymerase chain reaction. Biotechniques 1991; 10(4): 442-6. google scholar
  • 17. Rohland N, Hofreiter M. Ancient DNA extraction from bones and teeth. Nat Protoc 2007; 2(7): 1756-62. [CrossRef] google scholar
  • 18. Van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 2009; 30(2): E386-E94. [CrossRef] google scholar
  • 19. Vazzana A, Scalise LM, Traversari M, Figus C, Apicella SA, Buti L, et al. A multianalytic investigation of weapon-related injuries in a Late Antiquity necropolis, Mutina, Italy. J Archaeol Sci Rep 2018; 17: 550-9. [CrossRef] google scholar
  • 20. Mikulski RN, Schutkowski H, Smith MJ, Doumet-Serhal C, Mitchell PD. Weapon injuries in the crusader mass graves from a 13th century attack on the port city of Sidon (Lebanon). PLoS One 2021; 16(8): e0256517. [CrossRef] google scholar
  • 21. Skoglund P, Sjödin P, Skoglund T, Lascoux M, Jakobsson M. Investigating population history using temporal genetic differentiation. Mol Biol Evol 2014; 31(9): 2516-27. [CrossRef] google scholar
  • 22. Llamas B, Fehren-Schmitz L, Valverde G, Soubrier J, Mallick S, Rohland N, et al. Ancient mitochondrial DNA provides highresolution time scale of the peopling of the Americas. Sci Adv 2016; 2(4): e1501385. [CrossRef] google scholar
  • 23. Orlando L, Allaby R, Skoglund P, Der Sarkissian C, Stockhammer PW, Âvila-Arcos MC, et al. Ancient DNA analysis. Nat Rev Methods Primers 2021; 1(1): 1-26. [CrossRef] google scholar
  • 24. Bolnick DA, Fullwiley D, Duster T, Cooper RS, Fujimura JH, Kahn J, et al. The science and business of genetic ancestry testing. Science 2007; 318(5849): 399-400. [CrossRef] google scholar
  • 25. Kerner G, Laval G, Patin E, Boisson-Dupuis S, Abel L, Casanova J-L, et al. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years. Am J Hum Genet 2021; 108(3): 517-24. [CrossRef] google scholar
  • 26. Liu X, Orlando L. mapDATAge: a ShinyR package to chart ancient DNA data through space and time. Bioinformatics 2022; 38(16): 3992-4. [CrossRef] google scholar
  • 27. Ottoni C, Ricaut F-X, Vanderheyden N, Brucato N, Waelkens M, Decorte R. Mitochondrial analysis of a Byzantine population reveals the differential impact of multiple historical events in South Anatolia. Eur J Med Genet 2011; 19(5): 571-6. [CrossRef] google scholar
  • 28. Ottoni C, Rasteiro R, Willet R, Claeys J, Talloen P, Van de Vijver K, et al. Comparing maternal genetic variation across two millennia reveals the demographic history of an ancient human population in southwest Turkey. R Soc Open Sci 2016; 3(2): 150250. [CrossRef] google scholar
  • 29. Tepgeç F, Görgülü M. Kadıkalesi Geç Bizans Dönemi Gömülerinin Mitokondriyel Kökenleri. Acta Med Nicomedia 2022 5(3): 98-103. google scholar
  • 30. Brandt G, Haak W, Adler CJ, Roth C, Szécsényi-Nagy A, Karimnia S, et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science 2013; 342(6155): 257-61. [CrossRef] google scholar
  • 31. Pala M, Olivieri A, Achilli A, Accetturo M, Metspalu E, Reidla M, et al. Mitochondrial DNA signals of late glacial recolonization of Europe from near eastern refugia. Am J Hum Genet 2012; 90(5): 915-24. [CrossRef] google scholar
  • 32. Juras A, Krzewinska M, Nikitin AG, Ehler E, Chylenski M, tukasik S, et al. Diverse origin of mitochondrial lineages in iron age Black Sea Scythians. Sci Rep 2017; 7(1): 1-10. [CrossRef] google scholar
  • 33. Fernandez-Dominguez E, Reynolds L. The Mesolithic-Neolithic transition in Europe: a perspective from ancient human DNA. Times of Neolithic transition along the Western Mediterranean: Springer; 2017. p. 311-38. [CrossRef] google scholar
  • 34. Modi A, Nesheva D, Sarno S, Vai S, Karachanak-Yankova S, Luiselli D, et al. Ancient human mitochondrial genomes from Bronze Age Bulgaria: new insights into the genetic history of Thracians. Sci Rep 2019; 9(1): 1-10. [CrossRef] google scholar
  • 35. Rishishwar L, Jordan IK. Implications of human evolution and admixture for mitochondrial replacement therapy. BMC genomics 2017; 18(1): 1-11. [CrossRef] google scholar
  • 36. Pipek OA, Medgyes-Horvath A, Dobos L, Stéger J, Szalai-Gindl J, Visontai D, et al. Worldwide human mitochondrial haplogroup distribution from urban sewage. Sci Rep 2019; 9(1): 1-9. [CrossRef] google scholar
  • 37. Cvjetan S, Tolk H-V, Barac Lauc L, Çolak I, Dordevic D, Efremovska L, et al. Frequencies of mtDNA haplogroups in southeastern Europe-Croatians, Bosnians and Herzegovinians, Serbians, Macedonians and Macedonian Romani. Coll Antropol 2004; 28(1): 193-8. google scholar


Copy and paste a formatted citation or use one of the options to export in your chosen format



Tepgeç, F., & Görgülü, M. (2022). The Mitochondrial Origins of the Hellenistic Individuals of Ayasuluk Hill. Experimed, 12(3), 139-148.


Tepgeç F, Görgülü M. The Mitochondrial Origins of the Hellenistic Individuals of Ayasuluk Hill. Experimed. 2022;12(3):139-148.


Tepgeç, F.; Görgülü, M. The Mitochondrial Origins of the Hellenistic Individuals of Ayasuluk Hill. Experimed, [Publisher Location], v. 12, n. 3, p. 139-148, 2022.

Chicago: Author-Date Style

Tepgeç, Fatih, and Mehmet Görgülü. 2022. “The Mitochondrial Origins of the Hellenistic Individuals of Ayasuluk Hill.” Experimed 12, no. 3: 139-148.

Chicago: Humanities Style

Tepgeç, Fatih, and Mehmet Görgülü. The Mitochondrial Origins of the Hellenistic Individuals of Ayasuluk Hill.” Experimed 12, no. 3 (Jun. 2023): 139-148.

Harvard: Australian Style

Tepgeç, F & Görgülü, M 2022, 'The Mitochondrial Origins of the Hellenistic Individuals of Ayasuluk Hill', Experimed, vol. 12, no. 3, pp. 139-148, viewed 9 Jun. 2023,

Harvard: Author-Date Style

Tepgeç, F. and Görgülü, M. (2022) ‘The Mitochondrial Origins of the Hellenistic Individuals of Ayasuluk Hill’, Experimed, 12(3), pp. 139-148. (9 Jun. 2023).


Tepgeç, Fatih, and Mehmet Görgülü. The Mitochondrial Origins of the Hellenistic Individuals of Ayasuluk Hill.” Experimed, vol. 12, no. 3, 2022, pp. 139-148. [Database Container],


Tepgeç F, Görgülü M. The Mitochondrial Origins of the Hellenistic Individuals of Ayasuluk Hill. Experimed [Internet]. 9 Jun. 2023 [cited 9 Jun. 2023];12(3):139-148. Available from: doi: 10.26650/experimed.1183293


Tepgeç, Fatih - Görgülü, Mehmet. The Mitochondrial Origins of the Hellenistic Individuals of Ayasuluk Hill”. Experimed 12/3 (Jun. 2023): 139-148.


Published Online29.12.2022


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.