Research Article


Factor Analysis and Validity in Social Sciences: Application of Exploratory and Confirmatory Factor Analyses

Muhsin Murat Yaşlıoğlu

In this paper, both exploratory and confirmatory factor analyses are detailed. Best practises and some key topics for aforementioned analyses are evaluated. The important points of factor analysis and values extracted from the results tables are noted and the meanings of the key values are investigated both for meaning and especially for control of the final results. 

Sosyal Bilimlerde Faktör Analizi ve Geçerlilik: Keşfedici ve Doğrulayıcı Faktör Analizlerinin Kullanılması

Muhsin Murat Yaşlıoğlu

Makalede, keşfedici ve doğrulayıcı faktör analizleri anlatılmış ve bu analizleri doğru ele alabilmek için gerekli püf noktalara değinilmiştir. Uygulamacıların bu faktör analizlerini gerçekleştirirken dikkat etmesi gereken noktalar ve analizler sonucu elde edilecek çıktı tablolarının yorumlanması üzerinde durulmuştur. Bu tablolarda yer alan değerlerin ne anlama geldiği ve özellikle de faktör analizlerinin geriye dönük kontrolü bağlamında nasıl kullanılabileceğine yönelik ipuçları verilmiştir. 


PDF View

References

  • Aish, A. M., & Jöreskog, K. G. (1990). A panel model for political efficacy and responsiveness: An application of LISREL 7 with weighted least squares. Quality & Quantity, 24(4), 405-426. [CrossRef] google scholar
  • Albayrak, A. S. (2006). Uygulamali çok degiskenli istatistik teknikleri. Ankara: Asil Yayin Dagitim. google scholar
  • Arbuckle, J. (2008). Amos 17.0 user’s guide. SPSS Inc.. google scholar
  • Barrett, P. (2007). Structural equation modelling: Adjudging model fit. Personality And Individual Differences, 42(5), 815-824. [CrossRef] google scholar
  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588. [CrossRef] google scholar
  • Bollen, K. A. (1990). Overall fit in covariance structure models: Two types of sample size effects. Psychological Bulletin, 107(2), 256. [CrossRef] google scholar
  • Brown, J. D. (2009). Statistics Corner Questions and answers about language testing statistics: Principal components analysis and exploratory factor analysis, In.Definitions, differences, and choices. google scholar
  • Byrne, B. M. (2011). Structural equation modeling with AMOS Basic concepts, applications, and programming (Multivariate Applications Series), Routledge, New York. google scholar
  • Büyüköztürk, Ş. (2002). Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı. Kuram Ve Uygulamada Eğitim Yönetimi, 32(32), 470-483. google scholar
  • Campbell, D. T. (1960). Recommendations for APA test standards regarding construct, trait, or discriminant validity. American Psychologist, 15(8), 546. [CrossRef] google scholar
  • Cattell, R. (Ed.). (2012). The scientific use of factor analysis in behavioral and life sciences. Springer Science & Business Media. google scholar
  • Churchill Jr, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal Of Marketing Research, 64-73. [CrossRef] google scholar
  • Coan, R. W. (1959). A comparison of oblique and orthogonal factor solutions. The Journal of Experimental Education, 27(3), 151-166. [CrossRef] google scholar
  • Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal Of Applied Psychology, 78(1), 98. [CrossRef] google scholar
  • Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical assessment, research & evaluation, 10(7), 1-9. google scholar
  • Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281. [CrossRef] google scholar
  • Diamantopoulos, A. & Siguaw, J. (2000). Introducing LISREL: A Guide for the Uninitiated (Introducing Statistical Methods Series). Sage Publications, London. [CrossRef] google scholar
  • DiStefano, C., Zhu, M., & Mindrila, D. (2009). Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research & Evaluation, 14(20), 1-11. google scholar
  • Dicle, C., & Kılınç B. (2007). Faktör Analizi ile 2006 Dünya Kupasına Katılan Takımların Belirlenmesi. Marmara İ.İ.B.F. Dergisi, 23(2), 355-362. google scholar
  • Eisen, M., Ware Jr, J. E., Donald, C. A., & Brook, R. H. (1979). Measuring components of children’s health status. Medical Care, 902-921. [CrossRef] google scholar
  • Eymen, U. E. (2007). SPSS 15.0 ile veri analizi. İstatistik Merkezi. google scholar
  • Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 56-83. [CrossRef] google scholar
  • Field, A. (2006). Research Methods II: Reliability Analysis, Sage Publications, London. google scholar
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal Of Marketing Research, 39-50. [CrossRef] google scholar
  • Gorsuch, R. L. (1990). Common factor analysis versus component analysis: Some well and little known facts. Multivariate Behavioral Research, 25(1), 33-39. [CrossRef] google scholar
  • Hair, J. F. J., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis Seventh Edition Prentice Hall. google scholar
  • Haladyna, T. M. (1999). Developing and validating multiple-choice exam items (2nd ed.). Lawrence Erlbaum Associates, Mahwah, NJ. google scholar
  • Hoelter, J. W. (1983). The analysis of covariance structures: Goodness-of-fit indices. Sociological Methods & Research, 11(3), 325-344. [CrossRef] google scholar
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. [CrossRef] google scholar
  • Johnson, R. A., & Wichern, D. W. (2014). Applied multivariate statistical analysis (Vol. 4). New Jersey: Prentice-Hall. google scholar
  • Jolliffe, I. T. (1986). Principal Component Analysis and Factor Analysis. In Principal component analysis (pp. 115-128). Springer New York. [CrossRef] google scholar
  • Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Scientific Software International. Mooresville, IL. google scholar
  • Kalayci, Ş. (2006). Faktör analizi. SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri, Asil Yayın Dağıtım. google scholar
  • Kenny, D. A., & McCoach, D. B. (2003). Effect of the number of variables on measures of fit in structural equation modeling. Structural Equation Modeling, 10(3), 333-351. [CrossRef] google scholar
  • Kieffer, K. M. (1998). Orthogonal versus Oblique Factor Rotation: A Review of the Literature regarding the Pros and Cons. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA. google scholar
  • Maiti, S. S., & Mukherjee, B. N. (1991). Two new goodness‐of‐fit indices for covariance matrices with linear structures. British Journal of Mathematical and Statistical Psychology, 44(1), 153-180. [CrossRef] google scholar
  • MacCallum, R. C., & Tucker, L. R. (1991). Representing sources of error in the common-factor model: Implications for theory and practice. Psychological Bulletin, 109(3), 502. [CrossRef] google scholar
  • McDonald, R. P., & Ho, M. H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64. [CrossRef] google scholar
  • McHorney, C. A., Ware Jr, J. E., Lu, J. R., & Sherbourne, C. D. (1994). The MOS 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Medical Care, 40-66. [CrossRef] google scholar
  • McQuitty, S. (2004). Statistical power and structural equation models in business research. Journal of Business Research, 57(2), 175-183. [CrossRef] google scholar
  • Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105(3), 430. [CrossRef] google scholar
  • Nunnally, J. C. (1979). Psychometric theory (2nd ed). McGraw-Hill, New York google scholar
  • Pett, M. A., Lackey, N. R., & Sullivan, J. J. (2003). Making sense of factor analysis: The use of factor analysis for instrument development in health care research. Sage. [CrossRef] google scholar
  • Raykov, T. (1998). Coefficient alpha and composite reliability with interrelated nonhomogeneous items. Applied Psychological Measurement, 22(4), 375- 385. [CrossRef] google scholar
  • Rigdon, E. E. (1996). CFI versus RMSEA: A comparison of two fit indexes for structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 3(4), 369-379. [CrossRef] google scholar
  • Saris, W. E., & Aalberts, C. (2003). Different explanations for correlated disturbance terms in MTMM studies. Structural Equation Modeling, 10(2), 193- 213. [CrossRef] google scholar
  • Saris, W. E., Satorra, A., & Sörbom, D. (1987). The detection and correction of specification errors in structural equation models. Sociological Methodology, 105-129. [CrossRef] google scholar
  • Schumacker, R. E., & Beyerlein, S. T. (2000). Confirmatory factor analysis with different correlation types and estimation methods. Structural Equation Modeling, 7(4), 629-636. [CrossRef] google scholar
  • Shevlin, M., & Miles, J. N. (1998). Effects of sample size, model specification and factor loadings on the GFI in confirmatory factor analysis. Personality and Individual Differences, 25(1). [CrossRef] google scholar
  • Suhr, D. D. (2006). Exploratory or confirmatory factor analysis? (pp. 1-17). In.Cary: SAS Institute. google scholar
  • Tabachnick, B. G., & Fidell, L. S. (2007). Using Multivariate Statistics. Pearson, Boston. google scholar
  • Özkan, K., & Alkan, H. (2004). Q-Tipi Faktör Analizinin Gerçekleştirilmesi İçin Tersinir Matrisin Oluşturulmasında Minimum Etkili Değişkenlerin Eklenmesi Yaklaşımı (Isparta İli Şarkikaraağaç İlçesi Orman Köyleri Örneği). Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(1). google scholar
  • Velicer, W. F., & Jackson, D. N. (1990). Component analysis versus common factor analysis: Some issues in selecting an appropriate procedure. Multivariate behavioral research, 25(1), 1-28. [CrossRef] google scholar
  • Wheaton, B., Muthen, B., Alwin, D. F., & Summers, G. F. (1977). Assessing reliability and stability in panel models. Sociological Methodology, 8, 84-136. [CrossRef] google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Yaşlıoğlu, M. (0001). Factor Analysis and Validity in Social Sciences: Application of Exploratory and Confirmatory Factor Analyses. Istanbul Business Research, 46(1), 74-85. https://doi.org/null


AMA

Yaşlıoğlu M. Factor Analysis and Validity in Social Sciences: Application of Exploratory and Confirmatory Factor Analyses. Istanbul Business Research. 0001;46(1):74-85. https://doi.org/null


ABNT

Yaşlıoğlu, M. Factor Analysis and Validity in Social Sciences: Application of Exploratory and Confirmatory Factor Analyses. Istanbul Business Research, [Publisher Location], v. 46, n. 1, p. 74-85, 0001.


Chicago: Author-Date Style

Yaşlıoğlu, Muhsin Murat,. 0001. “Factor Analysis and Validity in Social Sciences: Application of Exploratory and Confirmatory Factor Analyses.” Istanbul Business Research 46, no. 1: 74-85. https://doi.org/null


Chicago: Humanities Style

Yaşlıoğlu, Muhsin Murat,. Factor Analysis and Validity in Social Sciences: Application of Exploratory and Confirmatory Factor Analyses.” Istanbul Business Research 46, no. 1 (Sep. 2024): 74-85. https://doi.org/null


Harvard: Australian Style

Yaşlıoğlu, M 0001, 'Factor Analysis and Validity in Social Sciences: Application of Exploratory and Confirmatory Factor Analyses', Istanbul Business Research, vol. 46, no. 1, pp. 74-85, viewed 12 Sep. 2024, https://doi.org/null


Harvard: Author-Date Style

Yaşlıoğlu, M. (0001) ‘Factor Analysis and Validity in Social Sciences: Application of Exploratory and Confirmatory Factor Analyses’, Istanbul Business Research, 46(1), pp. 74-85. https://doi.org/null (12 Sep. 2024).


MLA

Yaşlıoğlu, Muhsin Murat,. Factor Analysis and Validity in Social Sciences: Application of Exploratory and Confirmatory Factor Analyses.” Istanbul Business Research, vol. 46, no. 1, 0001, pp. 74-85. [Database Container], https://doi.org/null


Vancouver

Yaşlıoğlu M. Factor Analysis and Validity in Social Sciences: Application of Exploratory and Confirmatory Factor Analyses. Istanbul Business Research [Internet]. 12 Sep. 2024 [cited 12 Sep. 2024];46(1):74-85. Available from: https://doi.org/null doi: null


ISNAD

Yaşlıoğlu, Muhsin Murat. Factor Analysis and Validity in Social Sciences: Application of Exploratory and Confirmatory Factor Analyses”. Istanbul Business Research 46/1 (Sep. 2024): 74-85. https://doi.org/null



TIMELINE



LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.