Research Article


DOI :10.26650/ISTJECON2019-0021   IUP :10.26650/ISTJECON2019-0021    Full Text (PDF)

A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring

Şahap Kavcıoğlu

The failure of banks to correctly analyze the credit worthiness of their customers has devastating consequences. Therefore, the importance of credit scoring in the banking sector has become a major field of research in recent years. There are some methods such as logistic regression, linear regression, discriminant analysis and artificial neural networks for credit scoring. The subject of this research is to evaluate the performance of machine learning and logistic regression models on credit scoring by comparison. In this study, it is aimed to develop a scorecard model in which banks can be exposed to a minimum level of credit risk by comparing the logistic regression and artificial neural network methods which are two of these methods. Although there are studies on the comparison of credit scoring models in the literature, the studies have been conducted through retail portfolios and a sample that covers a maximum of 4 years. Unlike the studies in the literature, this research was conducted through corporate firms and a larger sample than the studies in the literature. The result of the study indicated that artificial neural networks which have higher success than logistic regression on the development sample, saw lower success on the out of sample data. Thus, while artificial neural networks show higher performance, it is concluded that logistic regression provides more consistent results, and it is thought that artificial neural networks can produce more consistent results by optimization of the iteration processes.

JEL Classification : C45 , C51 , G21
DOI :10.26650/ISTJECON2019-0021   IUP :10.26650/ISTJECON2019-0021    Full Text (PDF)

Kurumsal Kredi Skorlamasında Klasik Yöntemlerle Yapay Sinir Ağı Karşılaştırması

Şahap Kavcıoğlu

Bankaların, müşterilerinin kredi değerliliğini doğru bir şekilde analiz etmemeleri yıkıcı sonuçlar doğurmaktadır. Bu nedenle, bankacılık sektöründe kredi skorlamasının önemi son yıllarda büyük bir araştırma alanı haline gelmiştir. Kredi değerliliğinin skorlanması için lojistik regresyon, doğrusal regresyon, diskriminant analizi ve yapay sinir ağları gibi yöntemler mevcuttur. Bu araştırmanın konusu makine öğrenmesi ve lojistik regresyon modellerinin kredi skorlaması modelindeki performanslarınnı kıyaslama yoluyla değerlendirmektir. Bu çalışma ile klasik yöntemlerle yapay sinir ağlarını karşılaştırarak, bankaların kredi riskine en az düzeyde maruz kalabilecekleri bir skorkart modeli geliştirilmesi amaçlanmıştır. Literatürde kredi skorlaması modellerinin kıyaslanmasına ilişkin çalışmalar mevcut olmakla birlikte, çalışmalar perakende portföyler üzerinden ve en fazla 4 yılı kapsayan bir örneklem üzerinden yapılmıştır. Araştırma literatürdeki çalışmalardan farklı olarak kurumsal firmalar üzerinden ve literatürdeki çalışmalara göre daha geniş bir örneklem üzerinden ele alınmıştır. Çalışma sonucunda geliştirme örnekleminde daha yüksek başarı sergileyen yapay sinir ağlarının, örneklem dışı veri seti üzerinde lojistik regresyondan daha düşük bir performans sergilediği görülmüştür. Böylece yapay sinir ağları yüksek performans gösterse de, lojistik regresyonun daha tutarlı sonuçlar verdiği bulgusuna ulaşılmakla birlikte yapay sinir ağlarının iterasyon süreçlerinde optimizasyon yapılması ile daha tutarlı sonuçlar üretebileceği düşünülmektedir.

JEL Classification : C45 , C51 , G21

EXTENDED ABSTRACT


In the banking sector, credit risk is one of the most important risk types that needs to be managed by banks. Banks have applied many different methods in order to measure credit risk. In this context, various statistical methods have been used in recent years in order to quickly and objectively measure the credit risk of customers. Regulators have set various standards and regulations for the use and spread of these statistical methods. 

In the first part of the study, an overview of the traditional model methodologies is given and in the next part, general information about the artificial neural networks which is one of the machine learning methodologies is given. Linear, logistic regression and discriminant analysis methods used in credit scoring are mentioned on a general level. Artificial neural networks are discussed in detail, the general structure of the model is explained and artificial neural network classifications in the literature are mentioned.

The aim of this study is to develop a scorecard model in which banks can be exposed to a minimum level of credit risk. To this end, scorecard models were developed using logistic regression and artificial neural network methods, which are credit scoring methods, and the obtained model results were compared. In this study, 8 years of data which includes the financial information and repayment habits of companies operating in the manufacturing, service and trade sectors in the corporate segment between 2010 and 2017 was used. The models in the study were developed through SPSS Modeler program.

The modular structure was preferred for logistic regression and financial and behavioral modules were created using the stepwise logistic regression method with 5% margin of error. The integration of modules was made by the enter method of logistic regression, thus it was possible that both modules could take part in module integration.

Unlike the logistic regression method, the modular structure was not used while developping the artificial neural network method. The variables in two different modules used in logistic regression were combined and the artificial neural network model was established over this single variable list. In the study, 80% of the data was allocated as learning and 20% of the data was allocated as test in the whole data set. After various analyses, 18 financial and 11 behavioral input variables were used in the model. In addition, the model consisted of 3 layers: 1 input layer, 1 hidden layer and 1 output layer. Considering the model’s technical aspects, the Sigmoid function was used as an activation function. The learning coefficient and the momentum coefficient were determined automatically by SPSS Modeler.

In the last part, ROC curves and Gini coefficients were compared to evaluate the model developed by the logistic regression and artificial neural network methods. The evaluation of the models was carried out both by the development sample and the out of sample data. In the development sample, the artificial neural network model which performed with a 0.76 Gini value showed a higher success than the logistic regression model which performed with a 0.56 Gini value. However, it was observed that artificial neural networks performed with a 0.60 Gini value which is less than the logistic regression 0.69 Gini value on the out of sample data set that was not included in the modeling process. According to this result, logistic regression was more consistent. However, it is thought that artificial neural networks can produce more consistent processes with the optimization of iteration processes.

As a result of this study, it is foreseen that traditional methods such as logistic regression will continue to be preferred in credit scoring and adopted by regulation as they are more comprehensible and produce consistent results. It is thought that artificial neural networks, which is one of the systems based on machine learning, will be developed and used in both credit scoring and customer service related areas.


PDF View

References

  • Abdou, H. A., & Pointon, J. (2011). Credit Scoring, Statistical Tecniques and Evaluatiın Criteria: A Review of the Literature. Intelligent Systems in Accounting, Finance & Management, 18(2-3), 59– 88. google scholar
  • Abdou, H., El-Masry, A., & Pointon, J. (2007). On the Applicability of Credit Scoring Models in Egyptian Banks. Banks and Bank Systems, 2(1), 4–20. google scholar
  • Abdou, H., Pointon, J., & El-Masry, A. (2008). Neural Nets versus Conventional Techniques in Credit Scoring in Egyptian Banking. Expert Systems with Applications, 35, 1275–1292. google scholar
  • Al Doori, M., & Beyrouti, B. (2014). Credit Scoring Model Based on Back Propagation Neural Network Using Various Activation and Error Function. International Journal of Computer Science and Network Security, 14(3), 16–24. google scholar
  • Alavala, C. (2007). Fuzzy Logic and Neural Networks. India: New Age International Publishers. google scholar
  • Ataseven, B. (2013). Yapay sinir ağları ile öngörü modellemesi. Öneri Dergisi, 10(39), 101–115. google scholar
  • Ballı, M. T. (2014). Yapay sinir ağları ile talep tahmini ve gıda sektöründe uygulanması. (Yüksek lisans tezi). Yıldız Teknik Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. google scholar
  • Bayır, F. (2006). Yapay sinir ağları ve tahmin modellemesi üzerine bir uygulama. İstanbul: (Yüksek lisans tezi). İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. Erişim Adresi: http://acikerisim. istanbul.edu.tr/bitstream/handle/123456789/26274/41491.pdf?sequence=1&isAllowed=y google scholar
  • Bekhet, H., & Kamel Eletter, S. (2014). Credit risk assessment model for Jordanian commercial banks: Neuralscoring approach. Review of Development Finance, 4, 20–28. google scholar
  • Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford: Clarendon Press. google scholar
  • Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39, 3446–3453. google scholar
  • Budak, H., & Erpolat, S. (2012). Kredi Riski Tahmininde Yapay Sinir Ağları ve Lojistik Regresyon Analizi Karşılaştırılması. Online Academic Journal of Information Technology, 3, 23–30. google scholar
  • Chih-Fong, T., & Jhen-Wei, W. (tarih yok). Using Neural Network Ensembles for Bankruptcy Prediction and Credit Scoring. google scholar
  • Çevik, K., & Dandıl, E. (2012). Bilişim Teknolojileri Dergisi, 5(1), 19–28. google scholar
  • Demirbulut, Y., Aktaş, M., Kalıpsız, O., & Bayracı, S. (2017). İstatistiksel ve Makine Öğrenimi Yöntemleriyle Kredi Skorlama. CEUR-WS (s. 273-284). Antalya: Turkish National Software Engineering Symposium. google scholar
  • Desai, V., Crook, J., & Jr. Overstreet, G. (1996). A Comparison of Neural Networks and Linear Scoring Models in the Credit Union Environment. European Journal of Operational Research, 95, 24–37. google scholar
  • Dinçer, H., Hacıoğlu, Ü., & Yüksel, S. (2016). Performance Assessment of Deposit Banks with CAMELS Analysis using Fuzzy ANP-MOORA Approaches and an Application on Turkish Banking Sector. Asian Research Consortium, 6(2), 32–56. google scholar
  • Donel, B. (2012). Yapay Sinir Ağları Yöntemiyle Kredi Skorlama. (Yüksek Lisans Tezi). İstanbul Teknik Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. google scholar
  • Ersoy, E., & Karal, Ö. (2012). Yapay Sinir Ağları ve İnsan Beyni. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 1(2), 188–205. google scholar
  • Han, L., Han, L., & Zhao, H. (2013). Orthogonal support vector machine for credit scoring. Engineering Applications of Artificial Intelligence, 26(2), 669–936. google scholar
  • Hooman, A., Marthandan, G., Wan Yusoff, W., Omid, M., & Karamizadeh, S. (2016). Statistical and data mining methods in credit scoring. The Journal of Developing Areas, 50(5), 371–381. google scholar
  • Irwin, R. (1965). Credit Management Handbook, National Associotion of Credit Management. Oxford: Credit Research Foundation. Jensen, H. (1992). Using Neural Networks for Credit Scoring. Managerial Finance, 18(6), 15–26. google scholar
  • Kamuyu Aydınlatma Platformu. (2019). KAP Yatımcı Kuruluşlar. 09/28/2019. Erişim Adresi: https:// www.kap.org.tr/tr/sirketler/YK google scholar
  • Kangal, D. P. (2017). Kredi skorlaması ve kullanılan yöntemlerin karşılaştırılmasına yönelik bir uygulama. (Yüksek lisans tezi). Bahçeşehir Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. google scholar
  • Karimi, A. (2014). Credit Risk Modeling for Commercial Banks. International Journal of Academic Research in Accounting, Finance and Management Sciences, 4(3), 187–192. google scholar
  • Keskenler, E. F., & Keskenler, M. F. (2017). Geçmişten Günümüze Yapay Sinir Ağları ve Tarihçesi. google scholar
  • Takvim-i Vekayi, 5(2), 8–18. Keskinkılıç, T. (2008). Temerrüt Olasılığının Tespitine İlişkin Ampirik Bir Çalışma. (Yüksek lisans tezi). Gazi Üniversitesi Sosyal Bilimler Enstitüsü, Ankara. google scholar
  • Kılıç, S. (2015). Binary logistic regression analysis. Journal of Mood Disorders, 5(4), 191–194. doi:10.5455/jmood.20151202122141 google scholar
  • Koç, S. (2018). Lojistik Regresyon Yöntemi ile Kredi Skorlama Uygulaması. (Yüksek Lisans Tezi). Kadir Has Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. google scholar
  • Kurtaran Çelik, M. (2010). Bankaların Finansal Başarısızlıklarının Geleneksel ve Yeni Yöntemlerle Öngörüsü. Yönetim ve Ekonomi, 17(2), 129–143. google scholar
  • Lee, M. K., Cheung, C. M., & Chen, Z. (2005). Acceptance of Internet-based Learning medium: the Role of Extrinsic and Intrinsic Motivation. Information & Management, 42, 1095–1104. google scholar
  • Lee, T.-S., Chiu, C.-C., Lu, C.-J., & Chen, I.-F. (2002). Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications, 23, 245–254. google scholar
  • Malhotra, R., & Malhotra, D. (2002). Differentiating Between Good Credits and Bad Credits Using Neuro-fuzzy Systems. European Journal of Operational Research, 136, 190–211. google scholar
  • Marques, A., García, V., & Sánchez, J. (2012). Exploring The Behaviour of Base Classifiers in Credit Scoring Ensembles. Expert Systems with Applications, 39, 10244–10250. google scholar
  • Marques, G., & Marques, S. (2013). A literature review on the application of evolutionary computing to credit scoring. Journal of the Operational Reserch Society, 64, 1384–1399. google scholar
  • Merkez Bankası. (2019, 09 01). Elektronik Veri Dağıtım Servisi. 09/09/2019. Erişim Adresi: https:// evds2.tcmb.gov.tr: https://evds2.tcmb.gov.tr/index.php?/evds/serieMarket/#collapse_4 google scholar
  • Niklis, D., Doumpos, M., & Zopounidis, C. (2012). Combining Market and Accounting-based Models for Credit Scoring Using a Classification Scheme Based on Support Vector Machines. Financial Engineering Laboratory, 1–28. google scholar
  • Öker, A. (2007). Ticari bankalarda kredi ve kredi riski yönetimi-bir uygulama. (Doktora tezi). Marmara Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. Erişim Adresi: http://www.tk.org.tr/APA/apa_2.pdf google scholar
  • Öztemel, E. (2012). Yapay Sinir Ağları. İstanbul: Papatya Yayıncılık. google scholar
  • Pacelli, V., & Azzollini, M. (2011). An Artificial Neural Network Approach for Credit Risk Management. Journal of Intelligent Learning Systems and Applications, 3, 103–112. doi:10.4236/ jilsa.2011.32012 google scholar
  • Ramchoun, H., Janati Idrissi, M., Ghanou, Y., & Ettaouil, M. (2016). Multilayer Perceptron: Architecture Optimization and Training. International Journal of Interactive Multimedia and Artificial Intelligence, 4(1), 26–30. doi:10.9781/ijimai.2016.415 google scholar
  • Řezáč,, M., & Řezáč, F. (2011). How to Measure the Quality of Credit Scoring Models. Finance a úvěr: Czech Journal of Economics and Finance, 61(5), 486–507. google scholar
  • Soni, A., & Abdullahi, A. U. (2015). Using Neural Networks for Credit Scoring. International Journal of Science, Tecnology&Management, 04(05), 26–31. google scholar
  • Soydemir, S. (2019). Bankacılık Sermaye Yeterliliği ve Yeni Ekonomi Programı. Ufuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(15), 301–325. google scholar
  • Taylan, D., & Aydın, T. (2018). The Trend Analysis of Lakes Region Precipitation Data in Turkey. Cumhuriyet Sciences Journal, 39(1), 258–273. google scholar
  • Tsai, C.-F., & Wu, J.-W. (2008). Using Neural Network Ensembles for Bankruptcy Prediction and Credit Scoring. Expert Systems with Applications, 34, 2639–2649. google scholar
  • Türkiye Bankalar Birliği. (09.09.2019). Türkiye Bankalar Birliği Risk Merkezi Aylık Bülten Haziran 2019. Erişim Adresi: https://www.riskmerkezi.org/Content/Upload/istatistikiraporlar/ekler/1926/Risk_ Merkezi_Aylik_Bulten_Ozeti_Haziran_2019.pdf google scholar
  • Türkiye Bankalar Birliği Çalışma Grubu. (2006). Kredi Riski Modelleri. Bankacılar Dergisi, 57, 33–66. 09.09.2019. Erişim Adresi: https://www.tbb.org.tr/Dosyalar/Arastirma_ve_Raporlar/kredi_riski_ modelleri.pdf google scholar
  • Uruş, A. (2019). Finansal Krizler Sonrası Uygulanan Regülasyonlar ve Etkinliği. Manisa Celal Bayar Üniversitesi İ.İ.B.F., 26(1), 32–48. google scholar
  • West, D. (2000). Neural network credit scoring models. Computers & Operations Reserch, 27, 1131–1152. google scholar
  • Yakut, E., & Elmas, B. (2013). işletmenin Finansal Başarısızlığının Veri Madenciliği ve Diskriminant Analizi Modelleri ile Tahmin Edilmesi. Afyon Kocatepe Üniversitesi, İİBF Dergisi, 15(1), 261–280. google scholar
  • Zekic-Susac, M., Sarlija, N., & Bensic, M. (2005). Small Business Credit Scoring: A Comparison of Logistic Regression, Neural Network, and Decision Tree Models. Intelligent Systems in Accounting, Finance & Management: International Journal, 13(3), 133–150. google scholar
  • Zhao, Z., Xu, S., Kang, B., Kabir, M., Liu, Y., & Wasinger, R. (2015). Investigation and improvement of multi-layer perception neural networks for credit scoring. Expert Systems with Applications, 42, 3508–3516. google scholar
  • Zhu, Y., Xie, C., Sun, B., Wang, G.-J., & Yan, X.-G. (2016). Predicting China’s SME Credit Risk in Supply Chain Financing by Logistic Regression, Artificial Neural Network and Hybrid Models. Sustainability, 8(433), 1–17. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Kavcıoğlu, Ş. (2019). A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring. Istanbul Journal of Economics, 69(2), 207-246. https://doi.org/10.26650/ISTJECON2019-0021


AMA

Kavcıoğlu Ş. A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring. Istanbul Journal of Economics. 2019;69(2):207-246. https://doi.org/10.26650/ISTJECON2019-0021


ABNT

Kavcıoğlu, Ş. A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring. Istanbul Journal of Economics, [Publisher Location], v. 69, n. 2, p. 207-246, 2019.


Chicago: Author-Date Style

Kavcıoğlu, Şahap,. 2019. “A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring.” Istanbul Journal of Economics 69, no. 2: 207-246. https://doi.org/10.26650/ISTJECON2019-0021


Chicago: Humanities Style

Kavcıoğlu, Şahap,. A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring.” Istanbul Journal of Economics 69, no. 2 (Sep. 2024): 207-246. https://doi.org/10.26650/ISTJECON2019-0021


Harvard: Australian Style

Kavcıoğlu, Ş 2019, 'A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring', Istanbul Journal of Economics, vol. 69, no. 2, pp. 207-246, viewed 10 Sep. 2024, https://doi.org/10.26650/ISTJECON2019-0021


Harvard: Author-Date Style

Kavcıoğlu, Ş. (2019) ‘A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring’, Istanbul Journal of Economics, 69(2), pp. 207-246. https://doi.org/10.26650/ISTJECON2019-0021 (10 Sep. 2024).


MLA

Kavcıoğlu, Şahap,. A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring.” Istanbul Journal of Economics, vol. 69, no. 2, 2019, pp. 207-246. [Database Container], https://doi.org/10.26650/ISTJECON2019-0021


Vancouver

Kavcıoğlu Ş. A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring. Istanbul Journal of Economics [Internet]. 10 Sep. 2024 [cited 10 Sep. 2024];69(2):207-246. Available from: https://doi.org/10.26650/ISTJECON2019-0021 doi: 10.26650/ISTJECON2019-0021


ISNAD

Kavcıoğlu, Şahap. A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring”. Istanbul Journal of Economics 69/2 (Sep. 2024): 207-246. https://doi.org/10.26650/ISTJECON2019-0021



TIMELINE


Submitted04.10.2019
Accepted02.12.2019
Published Online31.12.2019

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.