Research Article


DOI :10.26650/IstanbulJPharm.2022.1038546   IUP :10.26650/IstanbulJPharm.2022.1038546    Full Text (PDF)

Cardiac effects of dapagliflozin in diabetic rats with subacute exposure

Tuğçe BoranBahar Ulus KaracaAyça Karagöz KöroğluEngin KaptanFeriha ErcanGül Özhan

Background and Aims: Dapagliflozin (DAPA) is a sodium-glucose co-transporter 2 (SGLT2) inhibitor used for the treatment of type 2 diabetes mellitus (T2DM) as a monotherapy or combination therapy with other antidiabetic medicines. The Food and Drug Administration (FDA) recently approved DAPA to minimize the risk of hospitalization due to heart failure in patients with T2DM because of its antihypertensive and antihyperglycemic activities. However, further study of DAPA is necessary to ensure the safety of patients. Methods: T2DM was induced by streptozotocin (STZ) injection (35 mg/kg b.w. i.p.) in male rats that were fed a high-fat diet for two weeks before STZ injection. The diabetic rats were exposed to 10 mg/kg DAPA by oral gavage during sub-acute treatment. Total cholesterol levels and oxidative stress parameters were evaluated. Heart tissues were histologically examined, and cardiac troponin T (cTnT) levels were measured. Results: DAPA has the potential to inhibit diabetes-induced oxidative stress and morphologic damage to heart tissue, and increased cTnT levels of the heart, which is important for cardiac contractility. Conclusion: DAPA might have a protective effect on the heart at a 10 mg/kg oral dose; however, further experimental and clinical studies are required to clarify the cardio-protective potential of DAPA.


PDF View

References

  • Devenny, J.J., Godonis, H.E., Harvey, S.J., Rooney, S., Cullen, M.J., & Pelleymounter, M.A. (2012). Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyper-phagia in diet-induced obese (DIO) rats. Obesity, 20(8), 1645-1652. https://doi.org/10.1038/oby.2012.59 google scholar
  • Dhalla, N.S., Temsah, R.M., & Netticadan, T. (2000). Role of oxidative stress in cardiovascular diseases. Journal of Hypertension, 18(6), 655-673. https://doi: 10.1097/00004872-200018060-00002 google scholar
  • European Medicine Agency (EMA), Assessment Report-Forxiga. (2020 January 1). Retrieved from https://www.ema.europa.eu/ en/documents/assessment-report/forxiga-epar-public-assess-ment-report_en.pdf google scholar
  • European Society of Cardiology (ESC). 2020. Guidelines on dia-betes, pre-diabetes, and cardiovascular diseases developed in collaboration with the European Association for the Study of Diabetes (EASD). The task force for diabetes, pre-diabetes, and cardiovascular diseases of the ESC and the EASD. European Heart Journal, 41, 255-323. https://doi.org/10.1093/eurheartj/ehz486 google scholar
  • FDA (2020, January 5). Highlights of prescribing information-Farxiga Retrieved from https://www.accessdata.fda.gov/drug-satfda_docs/label/2014/202293s003lbl.pdf google scholar
  • FDA (2020, January 5). Highlights of prescribing information-Farxiga Retrieved from https://www.accessdata.fda.gov/drug-satfda_docs/label/2019/209091s002lbl.pdf google scholar
  • Forman, H.J., Zhang, H., & Rinna, A. (2009). Glutathione: Overview of its protective roles, measurement, and biosynthesis. Molecu-lar Aspects of Medicine, 30(1-2), 1-12. https://doi.org/10.1016/j. mam.2008.08.006 google scholar
  • Fox, C.S., Coady, S., Sorlie, P.D., Levy, D., Meigs, J.B., D’Agostino, R.B. ... Savage, P.J. (2004). Trends in cardiovascular complications of diabetes. Jama, 292(20), 2495-2499. https://doi.org/10.1001/ jama.292.20.2495 google scholar
  • Furman, B.L. (2015). Streptozotocin-induced diabetic models in mice and rats. Current Protocols in Pharmacology, 70(1), 5-47. https://doi.org/10.1002/0471141755.ph0547s70 google scholar
  • Gallwitz, B. (2018). The cardiovascular benefits associated with the use of sodium-glucose cotransporter 2 inhibitors-real-world data. European Endocrinology, 14(1), 17. https://doi.org/10.17925/ EE.2018.14.1.17 google scholar
  • Gawet, S., Wardas, M., Niedworok, E., & Wardas, P (2004). Malondi-aldehyde (MDA) as a lipid peroxidation marker. Wiadomoscilekar-skie (Warsaw, Poland: 1960), 57(9-10), 453-455. google scholar
  • Gomes, A.V., Barnes, J.A., Harada, K., & Potter, J.D. (2004). Role of troponin T in disease. Molecular and Cellular Biochemistry, 263(1), 115-129. https://doi.org/10.1023/B:MCBI.0000041853.20588.a0 google scholar
  • Han, S., Hagan, D.L., Taylor, J.R., Xin, L., Meng, W., Biller, S.A., ... Whal-ey, J.M. (2008). Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes, 57(6), 1723-1729. https://doi.org/10.2337/db07-1472 google scholar
  • Hussein, A.M., Eid, E.A., Taha, M., Elshazli, R.M., Bedir, R.F., & Lashin, L.S. (2020). Comparative study of the effects of GLP1 analog and SGLT2 inhibitor against diabetic cardiomyopathy in type 2 dia-betic rats: possible underlying mechanisms. Biomedicines, 8(3), 43. https://doi.org/10.3390/biomedicines8030043 google scholar
  • Inzucchi, S. E., Zinman, B., Wanner, C., Ferrari, R., Fitchett, D., Hantel, S., ... Johansen, O. E. (2015). SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome tri-als. Diabetes and Vascular Disease Research, 12(2), 90-100. https:// doi.org/10.1177/1479164114559852 google scholar
  • Jankowski, M., Bissonauth, V., Gao, L., Gangal, M., Wang, D., Da-nalache, B., ... Gutkowska, J. (2010). Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Research in Cardiol-ogy, 105(2), 205-218. https://doi.org/10.1007/s00395-009-0076-5 Kato, E.T., Silverman, M.G., Mosenzon, O., Zelniker, T.A., Cahn, A., Furtado, R.H., ... Wiviott, S.D. (2019). Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circula-tion, 139(22), 2528-2536. https://doi.org/10.1161/CIRCULA-TIONAHA.119.040130 google scholar
  • Kelly, K.J. (2020, January 3). Dapagliflozin approved to reduce risk for heart failure hospitalization in type 2 diabetes. Retrieved from https://www.jwatch.org/fw115953/2019/10/22/dapagliflozin-approved-reduce-risk-heart-failure. google scholar
  • Kıngır, Z.B., Kumral, Z.N.Ö., Çam, M.E., Çilingir, Ö.T., Şekerler, T., Ercan, F., ... Okuyan, B. (2019). Effects of dapagliflozin in experimen-tal sepsis model in rats. Turkish Journal of Trauma & Emergency Surgery, 25(3), 213-221. google scholar
  • Liro, A. (1985). Variation in weights of body and internal organs of the field mouse in a gradient of urban habitats. Acta Therio-logica, 30(24), 359-377. google scholar
  • Liu, Q., Wang, S., & Cai, L. (2014). Diabetic cardiomyopathy and its mechanisms: role of oxidative stress and damage. Journal of Dia-betes Investigation, 5(6), 623-634. https://doi.org/10.1111/jdi.12250">https://doi.org/10.1111/jdi.12250 Lorenzo-Almoros, A., Tunon, J., Orejas, M., Cortes, M., Egido, J., & Lorenzo, O. (2017). Diagnostic approaches for diabetic cardio-myopathy. Cardiovascular Diabetology, 16(1), 1-14. https://doi. org/10.1186/s12933-017-0506-x google scholar
  • Ptaszynska, A., Hardy, E., Johnsson, E., Parikh, S., & List, J. (2013). Effects of dapagliflozin on cardiovascular risk factors. Post-graduate Medicine, 125(3), 181-189. https://doi.org/10.3810/ pgm.2013.05.2667 google scholar
  • Rebolledo-Solleiro, D., & Fernandez-Guasti, A. (2018). Influence of sex and estrous cycle on blood glucose levels, body weight gain, and depressive-like behavior in streptozotocin-induced diabetic rats. Physiology & Behavior, 194, 560567. https://doi.org/10.1016/j. physbeh.2018.06.033 google scholar
  • Reed, J.W. (2016). Impact of sodium-glucose cotransporter 2 inhibitors on blood pressure. Vascular Health and Risk Manage-ment, 12, 393. https://doi.org/10.2147/VHRM.S111991 google scholar
  • Reilly, T.P., Graziano, M.J., Janovitz, E.B., Dorr, T.E., Fairchild, C., Lee, F., ... Tirmenstein, M. (2014). Carcinogenicity risk assessment sup-ports the chronic safety of dapagliflozin, an inhibitor of sodium-glucose co-transporter 2, in the treatment of type 2 diabetes mellitus. Diabetes Therapy, 5(1), 73-96. https://doi.org/10.1007/ s13300-014-0053-3 google scholar
  • Sehnert, A.J., Huq, A., Weinstein, B.M., Walker, C., Fishman, M., & Stainier, D.Y. (2002).Cardiac troponin T is essential in sarcomere as-sembly and cardiac contractility. Nature Genetics, 31(1), 106-110. https://doi.org/10.1038/ng875 google scholar
  • Singh, V.P., Le, B., Khode, R., Baker, K.M., & Kumar, R. (2008). Intracel-lular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Di-abetes, 57(12), 3297-3306. https://doi.org/10.2337/db08-0805 Skovs0, S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of Diabetes Investigation, 5(4), 349-358. https://doi.org/10.1111/jdi.12235 google scholar
  • Tanajak, P., Sa-Nguanmoo, P., Sivasinprasasn, S., Thummasorn, S., Siri-Angkul, N., Chattipakorn, S.C., & Chattipakorn, N. (2018). Car-dioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia-reperfusion injury. Journal of Endocrinology, 236(2), 6984. https://doi.org/10.1530/JOE-17-0457 google scholar
  • Thomson, S.C., Rieg, T., Miracle, C., Mansoury, H., Whaley, J., Vallon, V., & Singh, P. (2012). Acute and chronic effects of SGLT2 block-ade on glomerular and tubular function in the early diabetic rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302(1), R75-R83. https://doi.org/10.1152/ ajpregu.00357.2011 google scholar
  • Tiwari, B.K., Pandey, K.B., Abidi, A.B., & Rizvi, S.I. (2013). Markers of oxidative stress during diabetes mellitus. Journal of Biomark-ers, 2013. https://doi.org/10.1155/2013/378790 google scholar
  • Wallace, K.B., Hausner, E., Herman, E., Holt, G.D., Macgregor, J.T., Metz, A.L., ... York, M. J. (2004). Serum troponins as biomarkers of drug-induced cardiac toxicity. Toxicologic Pathology, 32(1), 106121. https://doi.org/10.1080/01926230490261302 google scholar
  • Wei, W., Liu, Q., Tan, Y., Liu, L., Li, X., & Cai, L. (2009). Oxidative stress, diabetes, and diabetic complications. Hemoglobin, 33(5), 370-377. https://doi.org/10.3109/03630260903212175 google scholar
  • Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., Kato, E.T., Cahn, A., ... Sabatine, M.S. (2019). Dapagliflozin and cardiovascular out-comes in type 2 diabetes. New England Journal of Medicine, 380(4), 347-357. https://doi.org/10.1056/NEJMoa1812389 google scholar
  • Zhang, M., Zhang, H., Liu, C., Li, X., Ling, M., Wang, Z., & Xing, Y. (2018). Myocardial protective effects of nicorandil on rats with type 2 diabetic cardiomyopathy. Medical Science Monitor Basic Re-search, 24, 141. https://doi.org/10.12659/MSMBR.910974 google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Boran, T., Ulus Karaca, B., Karagöz Köroğlu, A., Kaptan, E., Ercan, F., & Özhan, G. (2022). Cardiac effects of dapagliflozin in diabetic rats with subacute exposure. İstanbul Journal of Pharmacy, 52(1), 8-13. https://doi.org/10.26650/IstanbulJPharm.2022.1038546


AMA

Boran T, Ulus Karaca B, Karagöz Köroğlu A, Kaptan E, Ercan F, Özhan G. Cardiac effects of dapagliflozin in diabetic rats with subacute exposure. İstanbul Journal of Pharmacy. 2022;52(1):8-13. https://doi.org/10.26650/IstanbulJPharm.2022.1038546


ABNT

Boran, T.; Ulus Karaca, B.; Karagöz Köroğlu, A.; Kaptan, E.; Ercan, F.; Özhan, G. Cardiac effects of dapagliflozin in diabetic rats with subacute exposure. İstanbul Journal of Pharmacy, [Publisher Location], v. 52, n. 1, p. 8-13, 2022.


Chicago: Author-Date Style

Boran, Tuğçe, and Bahar Ulus Karaca and Ayça Karagöz Köroğlu and Engin Kaptan and Feriha Ercan and Gül Özhan. 2022. “Cardiac effects of dapagliflozin in diabetic rats with subacute exposure.” İstanbul Journal of Pharmacy 52, no. 1: 8-13. https://doi.org/10.26650/IstanbulJPharm.2022.1038546


Chicago: Humanities Style

Boran, Tuğçe, and Bahar Ulus Karaca and Ayça Karagöz Köroğlu and Engin Kaptan and Feriha Ercan and Gül Özhan. Cardiac effects of dapagliflozin in diabetic rats with subacute exposure.” İstanbul Journal of Pharmacy 52, no. 1 (Sep. 2024): 8-13. https://doi.org/10.26650/IstanbulJPharm.2022.1038546


Harvard: Australian Style

Boran, T & Ulus Karaca, B & Karagöz Köroğlu, A & Kaptan, E & Ercan, F & Özhan, G 2022, 'Cardiac effects of dapagliflozin in diabetic rats with subacute exposure', İstanbul Journal of Pharmacy, vol. 52, no. 1, pp. 8-13, viewed 8 Sep. 2024, https://doi.org/10.26650/IstanbulJPharm.2022.1038546


Harvard: Author-Date Style

Boran, T. and Ulus Karaca, B. and Karagöz Köroğlu, A. and Kaptan, E. and Ercan, F. and Özhan, G. (2022) ‘Cardiac effects of dapagliflozin in diabetic rats with subacute exposure’, İstanbul Journal of Pharmacy, 52(1), pp. 8-13. https://doi.org/10.26650/IstanbulJPharm.2022.1038546 (8 Sep. 2024).


MLA

Boran, Tuğçe, and Bahar Ulus Karaca and Ayça Karagöz Köroğlu and Engin Kaptan and Feriha Ercan and Gül Özhan. Cardiac effects of dapagliflozin in diabetic rats with subacute exposure.” İstanbul Journal of Pharmacy, vol. 52, no. 1, 2022, pp. 8-13. [Database Container], https://doi.org/10.26650/IstanbulJPharm.2022.1038546


Vancouver

Boran T, Ulus Karaca B, Karagöz Köroğlu A, Kaptan E, Ercan F, Özhan G. Cardiac effects of dapagliflozin in diabetic rats with subacute exposure. İstanbul Journal of Pharmacy [Internet]. 8 Sep. 2024 [cited 8 Sep. 2024];52(1):8-13. Available from: https://doi.org/10.26650/IstanbulJPharm.2022.1038546 doi: 10.26650/IstanbulJPharm.2022.1038546


ISNAD

Boran, Tuğçe - Ulus Karaca, Bahar - Karagöz Köroğlu, Ayça - Kaptan, Engin - Ercan, Feriha - Özhan, Gül. Cardiac effects of dapagliflozin in diabetic rats with subacute exposure”. İstanbul Journal of Pharmacy 52/1 (Sep. 2024): 8-13. https://doi.org/10.26650/IstanbulJPharm.2022.1038546



TIMELINE


Submitted29.12.2021
Accepted07.02.2022
Published Online28.04.2022

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.