### Research Article

DOI :10.26650/IstanbulJPharm.2020.0090   IUP :10.26650/IstanbulJPharm.2020.0090    Full Text (PDF)

# Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions

Background and Aims: This study aims to develop and evaluate a practical approach for the complicated area and centroid calculation of stable microemulsion regions. Pseudo ternary phase diagrams are used to determine the region of microemulsion existence. The effect of various surfactant/co-surfactant weight ratios on the extent of a stable microemulsion area can easily be observed with these diagrams. Furthermore, the optimum formulations are selected using the centroid of the microemulsion region. Methods: Microemulsion formulations were prepared by changing the weight ratios of the components. The titration method was used at a constant temperature. A pseudo ternary phase diagram was constructed using the spots of the stable microemulsion formulations. Results: The area and centroid of the stable microemulsion region were calculated by using the formulas manually and the macro edited for Microsoft® Excel. Both results were the same. The macro was user-friendly, easy to use, and worked well in Microsoft® Excel. Conclusion: Definitions, formulas, algorithms, and calculations used in this research will be constructive for everyone interested in this field and can be modified very easily in every different case.

#### References

• Abboud, E. (2010). Viviani’s theorem and its extension. The College Mathematics Journal, 41(3), 203-211.https://doi.org/10.4169/074683410X488683 google scholar
• Burguera, J. L., & Burguera, M. (2012). Analytical applications of emulsions and microemulsions. Talanta, 96, 11-20.https://doi. org/10.1016/j.talanta.2012.01.030 google scholar
• Das, S., Lee, S. H., Chia, V. D., Chow, P. S., Macbeath, C., Liu, Y., & Shliout, G. (2020). Development of microemulsion based topi-cal ivermectin formulations: pre-formulation and formulation studies. Colloids and Surfaces B: Biointerfaces, 189, 1-8.https://doi. org/10.1016/j.colsurfb.2020.110823 google scholar
• Fanun, M., Papadimitriou, V., & Xenakis, A. (2011). Characterization of cephalexin loaded nonionic microemulsions. Journal of Colloid and Interface Science, 362(1), 115-121.https://doi.org/10.1016/j. jcis.2011.05.042 google scholar
• Green, G., & Thomson, W. (1828). An essay on the application of mathematical analysis to the theories of electricity and magnetism. Nottingham: T Wheelhouse. google scholar
• Hathout, R. M., & Woodman, J. (2012). Applications of NMR in the char-acterization of pharmaceutical microemulsions. Journal of Controlled Release, 161(1), 62-72. https://doi.org/10.1016/j.jconrel.2012.04.032 google scholar
• Hickey, S., Hagan, S. A., Kudryashov, E., & Buckin, V. (2010). Analy-sis of phase diagram and microstructural transitions in an ethyl oleate/water/Tween 80/Span 20 microemulsion system using high-resolution ultrasonic spectroscopy. International Journal of Pharmaceutics, 388(1-2), 213-222.https://doi.org/10.1016/j. ijpharm.2009.12.003 google scholar
• Hoar, T. P., & Schulman, J. H. (1943). Transparent water in oil disper-sions: oleopathic hydromicelle. Nature, 152, 102-103.https://doi. org/10.1038/152102a0 google scholar
• Kreilgaard, M. (2002). Influence of microemulsions on cutane-ous drug delivery. Advanced Drug Delivery Reviews, 54(1), 77-98. https://doi.org/10.1016/S0169-409X(02)00116-3 google scholar
• Lawrence, M. J., & Rees, G. D. (2000). Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, 45(1), 89-121.https://doi.org/10.1016/S0169-409X(00)00103-4 google scholar
• Lee, Y., & Lim, W. (2017). Shoelace formula: connecting the area of a polygon with vector cross product. The Mathematics Teacher, 110(8), 631-636.https://doi.org/10.5951/mathteacher.110.8.0631 Liengme, B. V. (2016). VBA user-defined functions. In B. V. Liengme (Ed.), A guide to Microsoft Excel 2013 for scientists and engineers (pp. 181-206). San Diego: Academic Press.https://doi.org/10.1016/ C2014-0-03421-1 google scholar
• Liu, D., Kobayashi, T., Russo, S., Li, F., Plevy, S. E., Gambling, T. M., Carson, J. L., & Mumper, R. J. (2013). In vitro and in vivo evaluation of a water-in-oil microemulsion system for enhanced peptide intestinal delivery. The AAPS Journal, 15(1), 288-298.https://doi. org/10.1208/s12248-012-9441-7 google scholar
• Sahoo, S., Pani, N. R., & Sahoo, S. K. (2014). Microemulsion based topical hydrogel of sertaconazole: Formulation, characterization and evaluation. Colloids and Surfaces B: Biointerfaces, 120, 193-199. https://doi.org/10.1016/j.colsurfb.2014.05.022 google scholar
• Schmidts, T., Nocker, P., Lavi, G., Khulman, J., Czermak, P., & Runkel, F. (2009). Development of an alternative, time and cost saving method of creating pseudoternary diagrams using the example of a microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 340(1-3), 187-192. https://doi.org/10.1016/j. colsurfa.2009.03.029 google scholar
• Schulman, J. H., Stoeckenius, W., & Prince, L.M. (1959). Mechanism of formation and structure of microemulsions by electron micros-copy. The Journal of Physical Chemistry, 63(10), 1677-1680. https:// doi.org/10.1021/j150580a027 google scholar
• Smith, M. J., Goodchild, M. F., & Longley, P. A. (2007). Building blocks of spatial analysis. In M. J. Smith, M. F. Goodchild & P. A. Longley (Eds.), Geospatial analysis: A comprehensive guide to prin-ciples, techniques and software tools (pp. 69-71). United Kingdom: Matador. google scholar
• Soerjadi, R. (1968). On the computation of the moments of a polygon, with some applications. Heron, 16(5), 43-58. google scholar
• Spernath, A., & Aserin, A. (2006). Microemulsions as carriers for drugs and nutraceuticals. Advances in Colloid and Interface Sci-ence, 128-130, 47-64.https://doi.org/10.1016/j.cis.2006.11.016">https://doi.org/10.1016/j.cis.2006.11.016 Yang, J. H., Kim, Y., & Kim, K. M. (2002). Preparation and evalua-tion of aceclofenac microemulsion for transdermal delivery sys-tem. Archives of Pharmacal Research, 25(4), 534-540.https://doi. org/10.1007/BF02976614 google scholar
• Zhang, H., Cui, Y., Zhu, S., Feng, F., & Zheng, X. (2010). Characteriza-tion and antimicrobial activity of a pharmaceutical microemul-sion. International Journal of Pharmaceutics, 395(1-2), 154-160. https://doi.org/10.1016/j.ijpharm.2010.05.022 google scholar

#### Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format

##### APA

Berkman, M.S., & Güleç, K. (2021). Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions. İstanbul Journal of Pharmacy, 51(1), 42-49. https://doi.org/10.26650/IstanbulJPharm.2020.0090

##### AMA

Berkman M S, Güleç K. Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions. İstanbul Journal of Pharmacy. 2021;51(1):42-49. https://doi.org/10.26650/IstanbulJPharm.2020.0090

##### ABNT

Berkman, M.S.; Güleç, K. Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions. İstanbul Journal of Pharmacy, [Publisher Location], v. 51, n. 1, p. 42-49, 2021.

##### Chicago: Author-Date Style

Berkman, Murat Sami, and Kadri Güleç. 2021. “Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions.” İstanbul Journal of Pharmacy 51, no. 1: 42-49. https://doi.org/10.26650/IstanbulJPharm.2020.0090

##### Chicago: Humanities Style

Berkman, Murat Sami, and Kadri Güleç. Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions.” İstanbul Journal of Pharmacy 51, no. 1 (Jun. 2021): 42-49. https://doi.org/10.26650/IstanbulJPharm.2020.0090

##### Harvard: Australian Style

Berkman, MS & Güleç, K 2021, 'Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions', İstanbul Journal of Pharmacy, vol. 51, no. 1, pp. 42-49, viewed 23 Jun. 2021, https://doi.org/10.26650/IstanbulJPharm.2020.0090

##### Harvard: Author-Date Style

Berkman, M.S. and Güleç, K. (2021) ‘Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions’, İstanbul Journal of Pharmacy, 51(1), pp. 42-49. https://doi.org/10.26650/IstanbulJPharm.2020.0090 (23 Jun. 2021).

##### MLA

Berkman, Murat Sami, and Kadri Güleç. Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions.” İstanbul Journal of Pharmacy, vol. 51, no. 1, 2021, pp. 42-49. [Database Container], https://doi.org/10.26650/IstanbulJPharm.2020.0090

##### Vancouver

Berkman MS, Güleç K. Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions. İstanbul Journal of Pharmacy [Internet]. 23 Jun. 2021 [cited 23 Jun. 2021];51(1):42-49. Available from: https://doi.org/10.26650/IstanbulJPharm.2020.0090 doi: 10.26650/IstanbulJPharm.2020.0090

Berkman, MuratSami - Güleç, Kadri. Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions”. İstanbul Journal of Pharmacy 51/1 (Jun. 2021): 42-49. https://doi.org/10.26650/IstanbulJPharm.2020.0090

### TIMELINE

 Submitted 17.09.2020 Accepted 10.12.2020 Published Online 30.04.2021