Research Article


DOI :10.26650/JEPR963438   IUP :10.26650/JEPR963438    Full Text (PDF)

Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey

Gülşah Şentürk

Today, data accumulated during internet use have become an important source of information for people’s behaviour, issues, and needs, and due to real-time data acquisition, Google search data have become a focal point for researchers. As a result, it has been become more common to use GT data, which have been included in forecasting models for many economic indicators, including unemployment rate forecasting. Therefore, this study aims to determine whether including Google search data in forecasting models can improve the model’s performance in forecasting the unemployment rate in Turkey. In this context, out-ofsample forecasting was performed in this study using seasonally adjusted monthly unemployment rates for the period between January 2005 and August 2020 and monthly GT data about the topic of unemployment insurance. In addition, the forecasting performance of ARIMA and ARIMAX methods were compared.

JEL Classification : C53 , E24 , E37
DOI :10.26650/JEPR963438   IUP :10.26650/JEPR963438    Full Text (PDF)

Google Arama Verileri İşsizlik Oranı Tahmin Modelini İyileştirebilir mi? Türkiye için Ampirik Bir Analiz

Gülşah Şentürk

İnternet kullanımı esnasında depolanan verilerin insan davranışları, sorunları ve ihtiyaçları için önemli bir bilgi kaynağı haline geldiği günümüzde, Google arama verileri gerçek zamanlı olarak elde edilmesi nedeniyle araştırmacıların odağı haline gelmektedir. Pek çok ekonomik gösterge için tahmin modellerine dahil edilmeye başlanan Google Trends verilerinin işsizlik oranı tahmininde de kullanılması giderek yaygınlaşmaktadır. Bu çalışma, Türkiye’de işsizlik oranının tahmin edilmesinde Google arama verilerinin öngörü modeline dahil edilmesinin modelin öngörü yeteneğini iyileştirip iyileştirmediğini araştırmaktadır. Ocak 2005’ten Ağustos 2020’ye kadar olan dönem için mevsimsellikten arındırılmış aylık işsizlik oranları ile işsizlik sigortası konusuna dair aylık Google Trends verileri ele alınarak öngörü modeli oluşturulmaktadır. ARIMA ve ARIMAX yöntemleri aracılığıyla yapılan tahminlerin öngörü performansı kıyaslanmaktadır.

JEL Classification : C53 , E24 , E37

PDF View

References

  • Aouadi, A., Arouri, M., & Teulon, F. (2013). Investor attention and stock market activity: Evidence from France. Economic Modelling, 35, 674-681. google scholar
  • Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting. Discussion Paper, 4201. google scholar
  • Baker, S., & Fradkin, A. (2013). The impact of unemployment insurance on job search: Evidence from Google search data. The Review of Economics and Statistics, 99(5), 756-768. google scholar
  • Bangwayo-Skeete, P. F., & Skeete, R. W. (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tourism Management, 46, 454-464. google scholar
  • Barreira, N., Godinho, P., & Melo, P. (2013). Nowcasting unemployment rate and new car sales in South-Western Europe with Google Trends. Netnomics, 14, 129-165. google scholar
  • Beracha, E., & Wintoki, M. B. (2013). Forecasting residential real estate price changes from online search activity. Journal of Real Estate Research, 3, 283-312. google scholar
  • Bolivar, Ortiz, & Rodrigo. (2019). Nowcasting Turkish unemployment using real time data from Google. BBVA Research. google scholar
  • Box, G., & Jenkins, G. (1976). Time series analysis, forecasting and control. Holden-Day: California. google scholar
  • Bughin, J. (2011). Nowcasting the Belgian economy.. SSRN working paper. google scholar
  • Bui, V. X., & Nguyen, H. T. (2019). Stock market activity and Google Trends: The case of a developing economy. Journal of Economics and Development, 21(2), 191-212. google scholar
  • Castelnuovo, E., & Tran, T. D. (2017). Google it up! A Google Trends-based uncertainty index for the United States and Australia. Economics Letters, 161, 149-153. google scholar
  • Chadwick, M. G., & Şengül, G. (2012). Nowcasting unemployment rate in Turkey: Let's ask Google. TCMB Working Paper, 12(18). google scholar
  • Choi, H., & Varian, H. (2009). Predicting initial claims for unemployment benefits. Technical Report. google scholar
  • D’Amuri, F. (2009b). Predicting unemployment in short samples with internet job search query data. MPRA Paper, 18403 google scholar
  • D’Amuri, F., & Marcucci, J. (2009). ‘Google it!’ Forecasting the US uneployment rate with a Google job search index. . MPRA Paper, 18248. google scholar
  • Da, Z., Engelberg, J., & Gao, P. (2011).In search of attention. The Journal of Finance, 1461-1499. google scholar
  • Donadelli, M., & Gerotto, L. (2019). Non-macro based Google searches, uncertainity, and real economic activity. Research in International Business and Finance, 48, 111-142. google scholar
  • Eurostat. (2019). https://ec.europa.eu/eurostat google scholar
  • Fondeur, Y., & F. Karam’e. (2013). Can Google data help predict French youth unemployment? Economic Modelling, 30, 117-125. google scholar
  • Ginsberg, J., Mohebbi, H. M., Patel, S. R., Brammer, L., Smolinski, S., & Brilliant, L. (2008). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014. google scholar
  • Goddard, J., Kita, A., & Wang, Q. (2015). Investor attention and FX market volatility. Journal of International Financial Markets, 79-96. google scholar
  • Google. (2017). https://support.google.com/trends google scholar
  • Google Trends. (2020). https://trends.google.com google scholar
  • Hamid, A., & Heiden, M. (2015). Forecasting volatility with empirical similarity and Google Trends. Journal of Economic Behavior & Organization, 117, 62-81. google scholar
  • Han, L., Lv, Q., & Yin, L. (2017). Can investor attention predict oil prices? Energy Economics, 66, 547-558. google scholar
  • Huang, M. Y., Rojas, R. R., & Convery, P. D. (2020). Forecasting stock market movements using Google Trend searches. Empirical Economics, 59, 2821-2839. google scholar
  • Jain, A., & Biswal, P. C. (2019). Does internet search interest for gold move the gold spot, stock and exchange rate markets? A study from India. Resources Policy, 61, 501-507. google scholar
  • Kholodilin, K. A., Podstawski, M., & Siliverstovs, B. (2010). Do google searches help in nowcasting private consumption? A real-time evidence for the US. KOF Working Paper. google scholar
  • Mondria, J., Wu, T., & Zhang, Y. (2010). The determinants of international investment and attention allocation: Using internet search query data. Journal of International Economics, 82(1), 85-95. google scholar
  • Niesert, R., Oorschot, J., Veldhuisen, C., Brons, K., & Lange, R. (2019). Can Google search data help predict macroeconomic series? Tinbergen Institute Discussion Paper. google scholar
  • Pavlicek, J., & Kristoufek, L. (2015). Nowcasting unemployment rates with Google Searches: Evidence from the Visegrad group countries. PLOS One, 10(5), 1-11. google scholar
  • Sevüktekin, M. & Çınar, M. (2017). Ekonometrik Zaman Serileri Analizi: EViews Uygulamalı (Fifth Edition). Bursa: Dora Yayıncılık. google scholar
  • Smith, G. P. (2012). Google Internet search activity and volatility prediction in the market for foreign currency. Finance Research Letters, 9, 103-110. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Şentürk, G. (2022). Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey. Journal of Economic Policy Researches, 9(2), 229-244. https://doi.org/10.26650/JEPR963438


AMA

Şentürk G. Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey. Journal of Economic Policy Researches. 2022;9(2):229-244. https://doi.org/10.26650/JEPR963438


ABNT

Şentürk, G. Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey. Journal of Economic Policy Researches, [Publisher Location], v. 9, n. 2, p. 229-244, 2022.


Chicago: Author-Date Style

Şentürk, Gülşah,. 2022. “Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey.” Journal of Economic Policy Researches 9, no. 2: 229-244. https://doi.org/10.26650/JEPR963438


Chicago: Humanities Style

Şentürk, Gülşah,. Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey.” Journal of Economic Policy Researches 9, no. 2 (Sep. 2023): 229-244. https://doi.org/10.26650/JEPR963438


Harvard: Australian Style

Şentürk, G 2022, 'Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey', Journal of Economic Policy Researches, vol. 9, no. 2, pp. 229-244, viewed 30 Sep. 2023, https://doi.org/10.26650/JEPR963438


Harvard: Author-Date Style

Şentürk, G. (2022) ‘Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey’, Journal of Economic Policy Researches, 9(2), pp. 229-244. https://doi.org/10.26650/JEPR963438 (30 Sep. 2023).


MLA

Şentürk, Gülşah,. Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey.” Journal of Economic Policy Researches, vol. 9, no. 2, 2022, pp. 229-244. [Database Container], https://doi.org/10.26650/JEPR963438


Vancouver

Şentürk G. Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey. Journal of Economic Policy Researches [Internet]. 30 Sep. 2023 [cited 30 Sep. 2023];9(2):229-244. Available from: https://doi.org/10.26650/JEPR963438 doi: 10.26650/JEPR963438


ISNAD

Şentürk, Gülşah. Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey”. Journal of Economic Policy Researches 9/2 (Sep. 2023): 229-244. https://doi.org/10.26650/JEPR963438



TIMELINE


Submitted06.07.2021
Accepted16.11.2021
Published Online29.07.2022

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.