Research Article


DOI :10.26650/JGEOG2021-814561   IUP :10.26650/JGEOG2021-814561    Full Text (PDF)

Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taşlıdere Basin Example

Arif Çağdaş AydınoğluGehver Altürk

As a disaster type, landslides cause significant life and economic losses; hence, producing landslide susceptibility maps is a priority research topic. This study aims to perform a landslide susceptibility analysis for shallow landslides by using statistics and machine learning techniques and evaluate the model performance using the Rize-Taşlıdere Basin as an example. First, literature was examined. Next, a detailed research was performed on the study area characteristics and the landslide inventory creation. Fifteen parameters (i.e., land use, lithology, elevation, slope, aspect, roughness, plan curvature, profile curvature, stream erosion index, topographic humidity index, sediment-carrying capacity, drainage density, distance to drainage, road density, and distance to road) produced by the geographic information system techniques were used as the input parameters in producing the landslide susceptibility map. Using the landslide inventory and input parameters, a parameter analysis was performed for the landslide susceptibility map in five classes by employing the frequency ratio (FR), logistic regression (LR), and artificial neural network (ANN) methods. The area under the curve and the area under the relative operating curve (AUC) were used to evaluate the model performance. The results show FR of 0.72, LR of 0.83, and ANN of 0.87. Although the ANN technique provided results with a higher accuracy, the LR technique that was near accurate was usable.

DOI :10.26650/JGEOG2021-814561   IUP :10.26650/JGEOG2021-814561    Full Text (PDF)

Heyelan Duyarlılık Haritalarının İstatistik ve Makine Öğrenmesi Teknikleri Kullanılarak Üretilmesi: Taşlıdere Havzası Örneği (Rize)

Arif Çağdaş AydınoğluGehver Altürk

Heyelanlar, ülkemizde önemli derecede can ve ekonomik kayba neden olmuş afet türü olduğundan heyelan duyarlılık haritalarının üretilmesi öncelikli araştırma konularındandır. Bu çalışmada, istatistik ve makine öğrenmesi teknikleri kullanılarak sığ heyelanlara ilişkin heyelan duyarlılık analizinin gerçekleştirilmesi ve Rize- Taşlıdere Havzası örneği ile modelin performansının değerlendirilmesi amaçlanmaktadır. Öncelikle konuya ilişkin literatür irdelenmiş, havzanın drenaj alanı içerisinde çalışma alanı genel özellikleri ve sığ heyelan envanterinin oluşturulmasına yönelik ayrıntılı araştırmalar yürütülmüştür. Heyelan duyarlılık haritasının üretilmesinde girdi parametresi olarak Coğrafi Bilgi Sistemleri (CBS) teknikleri ile üretilmiş onbeş parametre kullanılmıştır. Bu parametreler; arazi kullanımı, litoloji, yükselti, eğim, bakı, pürüzlülük, plan eğriselliği, profil eğriselliği, pürüzlülük indeksi, akarsu aşındırma gücü indeksi, topoğrafik nemlilik indeksi, sediman taşıma kapasitesi, drenaj yoğunluğu, drenaja olan mesafe, yol yoğunluğu ve yola olan mesafedir. Heyelan duyarlılık haritası için heyelan envanteri ve girdi parametreleri kullanılarak, Frekans Oranı (FO), Lojistik Regresyon (LR) ve Yapay Sinir Ağları (YSA) yöntemleri ile uygun parametre kestirimi ve analizler gerçekleştirilmiştir. Üretilen haritalar beş duyarlılık sınıfında belirlenmiş, performansının değerlendirilmesinde ROC (Bağıl İşlem Eğrisi) eğrisi altında kalan alan olan AUC (Eğri altındaki alan) değeri FO 0,72, LR 0.83, YSA 0.87 olarak elde edilmiştir. Böylelikle mevcut YSA tekniğinin daha yüksek doğrulukta sonuç vermesine rağmen, LR tekniğinin yakın doğrulukta ve kullanılabilir olduğu görülmektedir. 


EXTENDED ABSTRACT


Landslides are a disaster type that cause significant life and economic losses in our country. Hence, landslide susceptibility studies to reduce landslide damages and land use planning have become a very important issue for both scientists and public institutions. This study aims to perform a landslide susceptibility analysis for shallow landslides by using statistics and machine learning techniques and evaluate the model performance using the Rize-Taşlıdere Basin as an example. The basin representing the study area is considered as a potential landslide area due to its geographical features.

The literature on the subject was first examined. Next, a detailed research was performed on the general characteristics of the study area and the creation of a shallow landslide inventory within the drainage area of the basin. The inventory data of 878 landslides with point geometry were defined in the study area. Fifteen parameters produced by geographic information system techniques (i.e., land use, lithology, elevation, slope, aspect, roughness, plan curvature, profile curvature, roughness index, stream erosion index, topographic humidity index, sediment-carrying capacity, drainage density, distance to drainage, road density, and distance to road) were used as the input parameters in producing the landslide susceptibility map.

Using the landslide inventory and input parameters, appropriate parameter estimation and analysis were performed to the landslide susceptibility map by employing the frequency ratio (FR), logistic regression (LR), and artificial neural network (ANN) methods. FR is a widely used method because of its easy applicability. It is defined as the ratio of the probability of a disaster event to the probability of it not happening. The effects of the parameters causing landslide events are independently evaluated. According to the FR susceptibility map, 0.20% of the basin has very low landslide susceptibility (i.e., 11.47% low, 46.32% medium, 40.86% high, and 1.15% very high).

LR is the expression of the probability values of the dependent variable defining the landslide inventory according to the independent variables defining the input parameters. It determines the cause–effect relationship between the dependent and independent variables when the dependent binary variable (yes–no) expresses the landslide inventory. Each class of geology and land use was independently added to the analysis from each other; thus, the number of independent variables was 26. The LR susceptibility map showed that 4.55% of the basin has very low landslide susceptibility (i.e., 18.65% low, 17.45% medium, 43.37% high, and 15.99% very high landslide susceptibility).

The ANN is the computer model of this biological nervous system. Weights indicate the importance of the information in an artificial nerve cell and its effect on the cell. The inputs are multiplied by the weights of the connections they come from to adjust the effect of the inputs on the output to be produced. The weight values change to zero, negative, or positive. Positive and negative values indicate that the information has a positive or a negative effect. The inputs with zero weight are ineffective. In the ANN technique, the number of hidden layers is one. The number of neurons is selected, and the network structure is 26-18-1. The “momentum factor” is 0.5; the RMS is 0.001; the iteration number is 10.000; and the sigmoidal function acts as the activation function. The landslide susceptibility map is then obtained. The ANN susceptibility map showed that 6.52% of the basin has a very low landslide susceptibility (i.e., 7.20% low, 18.9% medium, 36.02% high, and 31.35% very high susceptible).

The area under the curve and the area under the relative operating curve were used to evaluate the performance. The AUC value was obtained as FO 0.72, LR 0.83, and ANN 0.87. Although the ANN gives a more accurate result than the other techniques, it is a complex analysis method. Creating a network design is a topic that should be studied in detail because the results will be optimistic in the case of excessive learning. The LR technique provided near-accurate results; hence, it is a more easily applicable method than the ANN. The weight coefficients of the parameters and their effect on the analysis are presented one by one. 


PDF View

References

  • Aleotti, P., & Chowdhury, R. (1999). Landslide Hazard Assessment: Summary Review and New Perspectives. Bulletin of Engineering Geology and the Environment, 58(1), 21-44. google scholar
  • Alkevli, T. (2015). Heyelan duyarlılık haritalarının üretilmesinde örneklem stratejileri ve bazı karar verme ağaçları algoritmalarının kullanımın üzerine bir araştırma. Ankara: Hacettepe Üniversitesi. google scholar
  • Altürk, G. (2019). Coğrafi bilgi sistemleri ortamında makine öğrenmesi ve istatistiksel yöntemler kullanılarak heyelan duyarlılık haritalarının üretilmesi: Rize Taşlıdere havzası örneği. Kocaeli, Gebze: Gebze Teknik Üniversitesi. google scholar
  • Arca, D., & Kutoğlu, Ş. (2017). Frekans Oranı Metodu ile Heyelan Duyarlılık Haritasının Üretilmesi. TMMOB Harita ve Kadastro Mühendisleri Odası, 16. Türkiye Harita Bilimsel ve Teknik Kurultayı. Ankara. Harita Kadastro Mühendisleri Odası: https:// www.hkmo.org.tr/resimler/ekler/23443add7429229_ek.pdf adresinden alındı google scholar
  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains. Geomorphology, 65(1-2), 15-31. google scholar
  • Ayalew, L., Yamagishi, H., & Ugawa, N. (2004). Landslide susceptibility mapping using GIS-based weighted linear combination,The case in Tsugawa area of Agano river,Niigata Prefecture,Japan. Landslides, 1(1), 73-81. google scholar
  • Barling, R. (1992). Saturation Zones and ephemerel on arable land in southeastern Australia. Unpublished Phd Dissertation. University of Melbourne. google scholar
  • Basher, I., & Hajmeer, M. (2000). Artificial neural networks: fundamentals,computing, design, and application. Journal of Microbiological Methods, 1(43), 3-31. google scholar
  • Beven, K., & Kirkby, M. (1979). A Physically Based, Variable Contributing Area Model of Basin Hydrology. Un modele â base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Bulletin, (24), 43-69. google scholar
  • Bonham-Carter, G. (1994). Geographic Information Systems for Geoscientists, Modeling with GIS. Oxford: Pergamon Press. google scholar
  • Can, A. (2014). Yapay sinir ağları ile heyelan duyarlılık haritalarının üretilmesinde farklı algoritmaların kullanımının araştırılması. Hacettepe Üniversitesi Yüksek Lisans Tezi. Ankara: Hacettepe Üniversitesi. google scholar
  • Cruden, D. (1991). A simple definition of a landslide. Bulletin of the International Association Engineering Geology, 27-29. google scholar
  • Çan T., Tekin S. (2016). İl sınırları bazında heyelan duyarlılık haritaları: Mersin Adana Osmaniye ve Hatay Örnekleri. Ulusal Heyelan Sempozyumu. Ankara. google scholar
  • ÇEMGM, (2016-2). Giresun İli Bulancak Havzası Heyelan Duyarlılık Haritası ve Değerlendirme Projesi. Ankara. google scholar
  • ÇEMGM, (2016). Rize ili Güneysu Mikrohavzası Heyelan Duyarlılık ve Tehlike Haritası Yapım Projesi. Ankara. google scholar
  • Daelo, J. (1993). Receiver operating characteristic laboratory (ROCLAB):software for developing decision strategies that account for uncertainty. (2nd) International Symposium on Uncertainty Modeling and Analysis, (s. 318-315). google scholar
  • Eker, A., Dikmen, M., Cambazoğlu, S., Düzgün, Ş., & Akgün, H. (2012). Bartın,Ulus ilçesi için yapay sinir ağı ve lojistik regresyon yöntemlerinin heyelan duyarlılık çalışmasına uygulanması ve karşılaştırılması. Gazi Üniversitesi Müh.Mim.Fak.Der., 27(1), 163173. google scholar
  • Ercanoglu, M. & Temiz, F.A. (2011). Aplication of logistic regression and fuzzy operators to landslide susceptibility assesment in Azdavay. Environmental Earth Sciences, 64(4), 949-964. google scholar
  • Ercanoğlu, M. (2005). Landslide susceptibility assesment of SE Bartın (West Black Sea region,Turkey) by artificial neural networks. Natural Hazards and Earth System Sciences, 5(6), 979-992. google scholar
  • Erinç, S. (1965). Yağış Müessiriyeti Üzerine Bir Deneme ve Yeni Bir İndis. İstanbul: İstanbul Üniv.Coğ.Enst.Yayınları google scholar
  • Evans, I. (1972). General geomorphometry,derivatives of altitude and descriptive statistics In Chorley. Spatial Analysis in Geomorphology (s. 17-90). içinde Harper & Row. google scholar
  • Frehner, M., Wasser, B., & Schwitter, R. (2007). Sustainability and success monitoring in protection forests. Bern: Federal Office for the Environment. google scholar
  • Furniss, M., T.D., R., & Yee, C. (1991). Road construction and maintenance. American Fisheries SocietyiSpecial Publication, 19, 297-324. google scholar
  • Gedikoğlu, A., Pelin, S., & Özsayar, T. (1979). Tectonic evolution of the eastern Pontides in Mesozoic. Geocome-I, 428(1), 68. google scholar
  • Gomez, H., & Kavzoğlu, T. (2005). Assesment of shallow lanslide susceptibility using artifucal neural networks in Jabonosa River Basin. Engineering Geology, 78(1-2), 11-27. google scholar
  • Gökçeoğlu, C., & Ercanoğlu, M. (2001). Heyelan Duyarlılık Haritalarının Hazırlanmasında Kullanılan Parametrelere İlişkin Belirsizlikler. Yerbilimleri, 22(23), 189-206. google scholar
  • Güven, İ. (1998). Trabzon-C30 ve D30 Paftaları. Ankara: 1/100,000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları. google scholar
  • Harr, R., & Nichols, R. (1993). Stabilizing forest roads to help restore fish habitats:a northwest Washington example. Fisheries, 18(4), 1822. google scholar
  • Hect-Nielsen, R. (1990). Neurocomputing. Addison-Wesley. google scholar
  • Horton, R. (1945). Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bulletin Of The Geological Society Of America, 56(3), 275-370. google scholar
  • Hosmer, D., Stanley Lemeshow , S., & Sturtdivant, R. (2013). Applied Logitic Regression (3 b.). New Jersey: John Wiley & Sons,. google scholar
  • Jacobs, R. (1998). Increased rates of convergence through learning rate adaptation. Neural Networks 1, 1(4), 295-307. google scholar
  • Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10(3), 215-236. google scholar
  • Konar, A. (2005). Computational Intelligence: Principles, Techniques and Applications (2005 edition b.). Almanya: Springer. google scholar
  • Larsen, M., & Parks, J. (1997). How wide is a Road?The association of roads and mass movements in a forested mountane environment. Earth Surface Process and Landforms, 22, 835-848. google scholar
  • Lee, S., & Talib, J. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47(7), 982-990. google scholar
  • Lee, S., Ryu, J., Min, K., & Won, J. (2003). Landslide susceptibility analysis using GIS and artificial neural network. Earth Surface Processes and Landforms, 28(12), 1361-1376. google scholar
  • Milewski, I., Markoski, B., Gorin, S., & Jovanovski, M. (2009). Application of remote sensinh and GIS in detection of potential landslide areas. Scientific Symposium Geography and Sustainable Development, (s. 455-465). Ohrid,Republic of Macedonia. google scholar
  • Moore, I., & Burch, G. (1986). Sediment transport capacity of sheet and rill flow:application of unit stream power theory. Water resources research, 22(8), 1350-1360. google scholar
  • Moore, I., & Wilson, J. (1992). Length-slope factors for the Revised Universal Soil Loss Equation :simplified method for estimation. Journal of Soil and Water Conversation, 47(5), 423-428. google scholar
  • Moore, I., Grayson, R., & Ladson, A. (1991). Digital terrain modelling:a review of hydrological,geomorphological and biological applications. Hydrological Processes, 5(1), 3-30. google scholar
  • Nefeslioğlu, H. A., Gokceoglu, C. & Sonmez, H. (2008). An assesment on the use of logistic regression and artificual neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology, 97(3-4), 171-191. google scholar
  • Negnevitsky, M. (2002). Artificial Intelligence A Guide to Intelligent Systems (2 b.). Great Britain: Addison-Wesley. google scholar
  • Okay, I., & Şahintürk, Ö. (1997). Geolog of the Eastern Pontides. n A.G.Robinson(ed.) Rgional and petroleum of the Black Sea and surriounding region,AAPG Memoir. google scholar
  • OGM (2007). Orman Genel Müdürlüğü Amenajman Planı. Ankara. google scholar
  • Özdemir, A. (2008). Zemin Mekaniği ve Zemin Mühendisliğine Giriş. Konya: İnci Matbaası. google scholar
  • Özsayar, T., Pelin, S., & Gedikoğlu, A. (1981). Doğu Pondidlerde kretase. KTÜ Yerbilimleri Dergisi, 65-114. google scholar
  • Saha, A., Gupta, R., & Arora, M. (2002). GIS-based landslide hazard zonation in Bhagirathi (Ganga) valley,Himalayas. Int.J.Remote Sensing, 23(2), 357-369. google scholar
  • Soeters, R., & Van Western, C. (1996). Slope instability recognition,analysis and zonation. Transportation Research Board, National Research Council. Washington D.C.: National Academy Press. google scholar
  • Şaroğlu, F., & Yılmaz, Y. (1986). Geological Evolution and Basin Models During Neotectonic Episode in the Eastern Anatolia. Maden Tetkik ve Arama Dergisi, 107(107), 70-93. google scholar
  • Tekin, S., & Çan, T. (2019). Yapay Sinir Ağları Yöntemi ile Ermenek Havzası nın (Karaman) Kayma Türü Heyelan Duyarlılık Değerlendirmesi. Bilge International Journal of Science and Technology Research, 3(1), 21-28. google scholar
  • Tekin, S., Çan, T., & Mazman, T. T. (2015). Doğu Akdeniz Bölgesinin Yapay Sinir Ağları Yöntemi İle Heyelan Duyarlılık Değerlendirmesi. MÜHJEO’2015: Ulusal Mühendislik Jeolojisi Sempozyumu, KTÜ, (s. 137-144). Trabzon. google scholar
  • Uzunsoy, M., & Görcelioğlu, E. (1985). Havza Islahında Temel İlke ve Uygulamalar. İstanbul: İ .Ü.Orman Fakültesi Yayınları. google scholar
  • Wang, C. (1994). Theory of generalization in learning machines with neural application. USA: The University of Pennsylvania. google scholar
  • Web (2018). 9 12, 2018 tarihinde psilolojik.gen.tr: https://www. psikolojik.gen.tr/yapay-sinir-aglari.html adresinden alındı google scholar
  • Wilson, J., & Gallant, J. (2000). Terrain Analysis :Principles and Applications (1 edition b.). Wiley. google scholar
  • Wythoff, B. (1993). Backpropagation neural networks: a tutorial. Chemometrics and Intelligent Laboratory Systems, 18(2), 115-155. google scholar
  • Varnes, D. (1978). Slope movement types and processes, in Schuster, R.L., and Krizek, R.J., eds., Landslides—Analysis and control. National Research Council, Transportation Research Board. Washington: National Academy of Sciences. google scholar
  • Yalçın, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey):Comparisons of results and confirmations. Catena, 72(1), 1-12. google scholar
  • Yeon, Y., & Ryu, K. (2010). Landslide susceptibility mapping in Injae,Korea,Using a decision tree. Engineering Geology, 116(3-4), 274-283. google scholar
  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region. Engineering Geology, 79(3-4), 251-266. google scholar
  • Yılmaz, I. (2009). Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability,logistic regression,artificial neural network and support vector machine. Environmental Earth Science, 61(4), 821-836. google scholar
  • Yılmaz, I. (2010). The effect of the sampling strategies on the landslide susceptibility mapping conditional probability and artificial neural networks. Environmental Earth Science, 60(3), 505-519. google scholar
  • Yılmaz, I., Terlemez, İ., & Uysal, Ş. (1998). Hınıs (Erzurum güneydoğusu) dolaylarının bazı stratigrafik ve tektonik özellikleri. MTA Dergisi, 108. google scholar
  • Yüksel, N. (2007). Coğrafi Bilgi Sistemleri Tabanlı Heyelan Duyarlılık Haritalarının Oluşturulmasında İstatistiksel Yöntemlerin ve Yapay Sinir Ağlarının Kullanılması: Kumluca-Ulus (Bartın) Bölgesi. Ege Coğrafya Dergisi, 23(2), 19-35. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Aydınoğlu, A.Ç., & Altürk, G. (2021). Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taşlıdere Basin Example. Journal of Geography, 0(43), 159-176. https://doi.org/10.26650/JGEOG2021-814561


AMA

Aydınoğlu A Ç, Altürk G. Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taşlıdere Basin Example. Journal of Geography. 2021;0(43):159-176. https://doi.org/10.26650/JGEOG2021-814561


ABNT

Aydınoğlu, A.Ç.; Altürk, G. Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taşlıdere Basin Example. Journal of Geography, [Publisher Location], v. 0, n. 43, p. 159-176, 2021.


Chicago: Author-Date Style

Aydınoğlu, Arif Çağdaş, and Gehver Altürk. 2021. “Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taşlıdere Basin Example.” Journal of Geography 0, no. 43: 159-176. https://doi.org/10.26650/JGEOG2021-814561


Chicago: Humanities Style

Aydınoğlu, Arif Çağdaş, and Gehver Altürk. Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taşlıdere Basin Example.” Journal of Geography 0, no. 43 (Aug. 2022): 159-176. https://doi.org/10.26650/JGEOG2021-814561


Harvard: Australian Style

Aydınoğlu, AÇ & Altürk, G 2021, 'Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taşlıdere Basin Example', Journal of Geography, vol. 0, no. 43, pp. 159-176, viewed 9 Aug. 2022, https://doi.org/10.26650/JGEOG2021-814561


Harvard: Author-Date Style

Aydınoğlu, A.Ç. and Altürk, G. (2021) ‘Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taşlıdere Basin Example’, Journal of Geography, 0(43), pp. 159-176. https://doi.org/10.26650/JGEOG2021-814561 (9 Aug. 2022).


MLA

Aydınoğlu, Arif Çağdaş, and Gehver Altürk. Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taşlıdere Basin Example.” Journal of Geography, vol. 0, no. 43, 2021, pp. 159-176. [Database Container], https://doi.org/10.26650/JGEOG2021-814561


Vancouver

Aydınoğlu AÇ, Altürk G. Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taşlıdere Basin Example. Journal of Geography [Internet]. 9 Aug. 2022 [cited 9 Aug. 2022];0(43):159-176. Available from: https://doi.org/10.26650/JGEOG2021-814561 doi: 10.26650/JGEOG2021-814561


ISNAD

Aydınoğlu, ArifÇağdaş - Altürk, Gehver. Producing Landslide Susceptibility Maps Using Statistics and Machine Learning Techniques: The Rize-Taşlıdere Basin Example”. Journal of Geography 0/43 (Aug. 2022): 159-176. https://doi.org/10.26650/JGEOG2021-814561



TIMELINE


Submitted23.10.2020
Accepted25.10.2021
Published Online31.12.2021

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.