Araştırma Makalesi


DOI :10.26650/ekoist.2022.37.1161945   IUP :10.26650/ekoist.2022.37.1161945    Tam Metin (PDF)

G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi

Seda Karakaş GeyikMehmet Hakan SatmanGülin Kalyoncu

Covid-19 pandemisi ilk günden günümüze dünyayı etkisi altına almış ve ülkeleri birçok farklı alanda etkilemiştir. Ülkelerin pandemi ile mücadele performanslarının belirleyicileri arasında mevcut sağlık sistemlerinin gücü, ekonomik yapıları, demografik yapıları, uygulanan önlemler ve yapılan destekler gibi kriterler sayılabilir. Bu süreçte ülkelerin dâhil olduğu uluslararası organizasyonların aldığı ortak kararlar da pandemi ile mücadele aşamasında ülkeleri desteklemektedir. Çalışmanın temel amacı söz konusu uluslararası organizasyonlardan G20 topluluğundaki ülkelerin pandemi ile mücadele performanslarının çok kriterli karar verme yöntemleri (ÇKKV) aracılığıyla değerlendirilmesidir. Çalışmada öncelikle kriterler için CRITIC yöntemi ile ağırlıklandırma işlemi gerçekleştirilmiştir. En önemli kriterler sırasıyla vaka sayısı, ölüm sayısı, likidite destekleri ve sağlık sektörüne yapılan ek harcamalar olarak saptanmıştır. Sonrasında ÇKKV yöntemlerinden TOPSIS, COPRAS, ARAS, WASPAS, MOORA, MABAC yöntemleri ile analiz gerçekleştirilerek ülkelere ilişkin sıralamalar elde edilmiştir. Nihai olarak ortak bir sıralama için COPELAND yöntemi kullanılmıştır. Sonuç olarak en başarılı ülkeler sırasıyla Avusturalya, Japonya ve Çin olarak belirlenirken son sıraları Brezilya, Meksika ve Güney Afrika paylaşmaktadır. 

DOI :10.26650/ekoist.2022.37.1161945   IUP :10.26650/ekoist.2022.37.1161945    Tam Metin (PDF)

Performance Evaluation of G20 Countries’ Fight Against COVID-19 Using Multiple Criteria Decision-Making Methods

Seda Karakaş GeyikMehmet Hakan SatmanGülin Kalyoncu

The COVID-19 pandemic has affected countries around the whole world in many different areas. The main determinants of a country’s performance against the pandemic can be summarized through criteria such as the strength of its current health system, economic structures, demographic structures, restrictions, and support. Countries’ strategies also involve the consensus that has been reached by international organizations. The main purpose of this study is to evaluate the performance of G20 countries using multiple criteria decision-making (MCDM) methods. The criteria were first weighted using the CRITIC method, with the number of cases, number of deaths, liquidity supports, and additional expenditures in the health sector having been determined as the most important criteria. The data were then analyzed using MCDM methods to obtain countries’ rankings. As a result, the most successful countries were respectively determined as Australia, Japan, and China, while Brazil, Mexico, and South Africa came in the respective last three places.


GENİŞLETİLMİŞ ÖZET


Since ancient times, the world has struggled with epidemics, and COVID-19 is the latest epidemic the whole world is still fighting. As with other epidemics, countries have invented new vaccines, changed and transformed themselves socioeconomically, and had to take new preventive actions. Working from home, curfews, vaccinations, protections, liquidity supports, health expenditures, and other government expenditures are among the most important actions countries have taken. Although no objective judgment or objective comparison exists about the ranks or importance levels of these measures and actions, they are considered to be important in the fight against COVID-19.

This study, first objectively examines the importance of these criteria in G20 countries’ fight against COVID-19. Of the obtained criteria weights, the number of cases, the number of deaths, and the amount of liquidity support are seen to be the most prominent criteria with the highest values. The CRITIC method has been used to obtain criteria weights using the data collected for Australia, Canada, France, Germany, Italy, Japan, South Korea, the United Kingdom, the United States of America, Argentina, Brazil, China, India, Indonesia, Mexico, Russia, Saudi Arabia, South Africa, and Turkey. The European Union (EU) as the other member of G20 countries has been omitted from the study to avoid using duplicate information, as the EU already contains some of the countries that were already mentioned. The dataset has been gathered from the World Health Organization (WHO), Our World in Data, Worldometer, and International Monetary Fund (IMF) databases and contains the most up-to-date data shared according to the data release calendar.

The other objective of this study is to rank the countries according to their criteria and criteria weights. The process of ordering is known to be defined along the set of real numbers (e.g., a sample of [1, 5, 9] are considered ordered just because 1 ≤ 5 and 5 ≤ 9). Other terms require the operations ordering and ranking to have perfectly defined binary comparison operators such as ≤, <,> and ≥. On the contrary, a sample in higher dimensions such as (1, 3), (5, 7), and (7, 1) cannot be ordered or ranked in as unique a way because the binary comparison operators are not defined for dimensions of p ≥ 2. Consequently, an infinite number of orderings can occur for the observations in such cases.

A multiple criteria decision-making method (MCDM) defines an exclusive ordering or ranking measure for ordering or ranking multivariate data with respect to predefined criteria, criteria weights, optimization directions, and a decision matrix. From this perspective, obtaining a mathematical ranking of countries with respect to a set of criteria is an ordering problem with an infinite number of solutions over a multi-dimensional space.

This study ranks countries according to the selected criteria. Due to the unique ranking process for each single method, more than one method is used to compare results. TOPSIS, COPRAS, ARAS, WASPAS, MOORA, and MABAC are the wellknown and widely applied members of the MCDM methods family in the relevant literature. Each single method results in similar but different rankings based on how the comparisons are defined. These differences regarding MCDM methods complicate how results are interpreted. For example, according to the MOORA and MABAC method, Japan ranks highest, but ranks as the second most successful country according to the TOPSIS method, fourth according to the COPRAS method, third according to the ARAS method, and second according to the WASPAS method. While all of these methods give the idea that Japan’s has had quite high success, they also pose an obstacle to forming a complete ranking.

The COPELAND method has been used to combine and interpret all the results obtained by the different methods. The COPELAND method is a summary measure that combines the results of many MCDM methods by performing pair-comparisons of the rankings. One of the most important findings of this study is the acknowledgement that Australia, Japan, and China have bene the most successful countries in the fight against COVID-19. When ranking countries’ success rates, Australia, Japan, and China are followed by Germany, South Korea, and the United Kingdom. Meanwhile, Brazil, Mexico, and South Africa were identified as relatively less successful countries in the fight against COVID-19. Turkey ranks 14th in the general ranking obtained with the COPELAND method. When separately evaluating the results obtained from the methods, Turkey’s rank is seen to vary between 12th and 15th place.

Important findings were also achieved by comparing the country rankings obtained using the MCDM methods with the results obtained using the COPELAND method. The rankings obtained using the COPRAS, ARAS, WASPAS, and MABAC methods are highly correlated to the ranking obtained using the COPELAND method, whereas TOPSIS and COPELAND have a relatively weak correlation coefficient of 74%. When examining the reported correlation matrix, the results are observed to be highly correlated, with none of the methods achieved an unexpected ranking due to the nondiagonal elements being quite far from zero.

The country rankings as obtained in this study can be a guide for other countries, and even the methods of successful countries can be adopted for fighting the pandemic in the future. Consequently, this study has also revealed the most prominent factors in the fight against COVID-19 pandemic and contributes to the literature in terms of providing a comprehensive analysis by having the model include financial data, current statistics, health data, and vaccination rates. The fact that the different MCDM methods ranked the countries differently is an important limitation for the study, and a summary measurement (i.e., COPELAND) was used to combine the rankings. Future studies may be able to obtain a final common ranking by including more methods and criteria in their analyses. 


PDF Görünüm

Referanslar

  • Aksoy, E., Ömürbek, N. ve Karaatlı, M. (2015). AHP temelli MULTİMOORA ve COPRAS yöntemi ile Türkiye Kömür İşletmeleri’nin performans değerlendirmesi. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 33(4): 1-28. google scholar
  • Arslan, R. ve Bircan, H. (2020). Çok kriterli karar verme teknikleriyle elde edilen sonuçların Copeland yöntemiyle birleştirilmesi ve karşılaştırılması. Yönetim ve Ekonomi: Celal Bayar Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 27(1): 109-127. google scholar
  • Arsu, T. (2021). Ülkelerin Covid-19 pandemisine karşı mücadelesinin çok kriterli karar verme yöntemleri ile değerlendirilmesi. Bitlis Eren Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Akademik İzdüşüm Dergisi, 6(1): 128-140. google scholar
  • Aydın, K. ve Sönmüş, A. (2021). Türkiye’de ve G-20 ülkelerinde Covid-19 sürecinde devletlerin politikaları. Al Farabi Uluslararası Sosyal Bilimler Dergisi, 6(1): 90-95. google scholar
  • Barua, B., & Barua, S. (2021). COVID-19 implications for banks: evidence from an emerging economy. SN Business & Economics, 1(1): 1-28. google scholar
  • Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis: an integrated approach. Springer Science & Business Media. google scholar
  • Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65-98. https://doi.org/10.1137/141000671 google scholar
  • Berensmann, K., Shimeles, A., & Ndung’u, N. (2020). Covid-19 crisis: How should the G20 support heavily indebted low-income countries?. T20 Policy Briefing Paper of Task Force, 8. google scholar
  • Boyacı, A. Ç. (2021). Which OECD countries are advantageous in fight against Covid-19?. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 37(1): 137-148. google scholar
  • Brauers, W. M., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition Economy. Control and Cybernetics, 35(2): 445-469. google scholar
  • Chakraborty, S. (2011). Applications of the MOORA method for decision making in manufacturing environment. The International Journal of Advanced Manufacturing Technology, 54: 1155-1166. google scholar
  • Chakraborty, S., & Zavadskas, E. K. (2014). Applications of WASPAS method in manufacturing decision making. Informatica, 25(1): 1-20. google scholar
  • Chakraborty, I., & Maity, P. (2020). Covid-19 outbreak: Migration, effects on society, global environment and prevention. The Science of the total environment, 728, 138882. https://doi. org/10.1016/j.scitotenv.2020.138882 google scholar
  • Chatterjee, P., Athawale, V. M., & Chakraborty, S. (2011). Materials selection using complex proportional assessment and evaluation of mixed data metods. Materials and Design, 32(2): 851-860. google scholar
  • Çakır, E. (2017). Kriter ağırlıklarının SWARA - Copeland yöntemi ile belirlenmesi: Bir üretim işletmesinde uygulama. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 4(1): 42-56. google scholar
  • Copeland, A. (1951). A reasonable social welfare function. Seminar on Applications of Mathematics to Social Sciences, University of Michigan, Ann Arbor. google scholar
  • Dadelo, S., Turskis, Z., Zavadskas, E., & Dadeliene, R. (2012). Multiple criteria assessment of elite security personel on the basis of ARAS and expert methods. Economic Computation and Economic Cybernetics Studies and Research, 46(4): 65-88. google scholar
  • Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The Critic method. Computers & Operations Research, 22(7): 763770. google scholar
  • Dünya Sağlık Örgütü (DSÖ). (2022). Global Health Workforce Statistics. [Available online at: https://www.who.int/data/gho/data/themes/topics/health-workforce ], Retrieved on February 11, 2022. google scholar
  • Dünya Sağlık Örgütü (DSÖ). (2022). COVID-19 Weekly Epidemiological Update. pp. 1-14. [Available online at: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---1-march-2022 ], Retrieved on March 8, 2022 google scholar
  • Fıshburn, P.C. (1977). Condorcet social choice functions. SIAM Journal of Applied Mathematics, 33(3): 469-489. google scholar
  • Gigovic, L., Bozanic, D., & Ljubojevic, S. (2017). Application of the GIS-DANP-MABAC multicriteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia. Renewable Energy, 103: 501-521. google scholar
  • G20. (2022). About the G20. [Available online at: https://g20.org/about-the-g20/ ], Retrieved on March 25, 2022. google scholar
  • Hezer, S., Gelmez, E. ve Özceylan, E. (2021). Comparative analysis of TOPSIS, VIKOR and COPRAS methods for the COVID-19 Regional Safety Assessment. Journal of Infection and Public Health, 14(6): 775-786. google scholar
  • Hwang, C.L., & Yoon, K. (1981). Methods for multiple attribute decision making. In: Multiple attribute decision making. Lecture Notes in Economics and Mathematical Systems, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48318-9_3 google scholar
  • IMF. (2021). Fiscal Monitor Database of Country Fiscal Measures in Response to the COVID-19 Pandemic. [Available online at: https://www.imf.org/en/Topics/imf-and-covid19/Fiscal-Policies-Database-in-Response-to-COVID-19], Retrieved on February 11, 2022. google scholar
  • Inoue, H. (2020). Japanese strategy to Covid-19: How does it work?. Global Health & Medicine, 2(2): 131-132. google scholar
  • İşlek, E., Özatkan, Y., Uslu, M. K. B., Arı, H. O., Çelik, H. ve Yıldırım, H. H. (2021). Türkiye’de COVID-19 pandemisi yönetimi ve sağlık politikası stratejileri. Türkiye Sağlık Enstitüleri Başkanlığı Dergisi, 4(2): 54-65. google scholar
  • Jahan, A., Mustapha, F., Sapuan, S. M., Ismail, M. Y., & Bahraminasab, M. (2012). A Framework for Weighting of Criteria in Ranking Stage of Material Selection Process. Int. J. Adv. Manufacturing Technology, 58: 411-420. google scholar
  • Karabasevic, D., Stanujkic, D., Urosevic, S., & Maksimovic, M. (2016). An approach to personel selection based on SWARA and WASPAS methods. Journal of Economics, Management and Informatics, 7(1): 1-11. google scholar
  • Klamler, C. (2005). The Copeland rule and Condorcet’s principle. Economic Theory, 25(3): 745749. google scholar
  • Macar, O. D. ve Asal, U. Y. (2020). Covid-19 ile uluslararası ilişkileri yeniden düşünmek: Tarih, ekonomi ve siyaset ekseninde bir değerlendirme. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, Bahar (Covid19-Özel Ek), 222-239. google scholar
  • McKibbin, W., & Vines, D. (2020). Global macroeconomic cooperation in response to the COVID-19 pandemic: a roadmap for the G20 and the IMF. Oxford Review of Economic Policy, 36(S1), S297-S337. graa032. https://doi.org/10.1093/oxrep/graa032. google scholar
  • Neogi, D. (2021). Performance appraisal of select nations in mitigation of COVID-19 pandemic using entropy based TOPSIS method. Ciencia & saude coletiva, 26: 1419-1428. google scholar
  • OECD. (2019). Health at a glance 2019: OECD indicators, OECD Publishing, Paris. [Available online at: https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2019_4dd50c09-en a], Retrieved on March 2, 2022. google scholar
  • OECD. (2020). Health at a glance: Europe 2020: State of health in the EU cycle, OECD Publishing, Paris. [Available online at: https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-europe-2020_82129230-en ], Retrieved on March 20, 2022. google scholar
  • Our World in Data. (2022). Coronavirus pandemic (COVID-19). [Available online at: https:// ourworldindata.org/covid-deaths], Retrieved on February 11, 2022. google scholar
  • Özyurda, F. (2021). COVID-19 pandemisinde Avustralya sağlık sistemi. Toplum ve Hekim, 36(6): 412-423. google scholar
  • Pamucar, D., & Cirovic, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Systems with Applications, 42(6): 3016-3028. google scholar
  • Saari, D.G., & Merlin, V.R. (1996). The Copeland method. Economic Theory, 8(1): 51-76. google scholar
  • Satman, M. H., Yıldırım, B. F., & Kuruca, E. (2021). JMcDM: A Julia package for multiple-criteria decision-making tools. Journal of Open Source Software, 6(65): 3430. google scholar
  • Sauer, M. (2022). Bill Gates: ‘If every country does what Australia did,’ the world could prevent the next pandemic. CNBC. [Available online at: https://www.cnbc.com/2022/02/24/bill-gates-australia-covid-blueprint-could-help-prevent-next-pandemic.html], Retrieved on April 2, 2022. google scholar
  • Sel, A. (2021). Covid 19 pandemisinde sağlık sistemi gelişmelerinin etkinliğinin ölçülmesi: G-20 üzerine bir inceleme. Kırklareli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. Cilt 10, Sayı 2, s. 181-202. google scholar
  • Seyhan, N. ve Seyhan, B. (2021). COVID-19 salgın sürecinde AB ülkelerindeki yaşam kalitesinin çok kriterli karar verme ile değerlendirilmesi. Journal of Social Research and Behavioral Sciences, 7(13), s. 158-180. google scholar
  • Selamzade, F. ve Özdemir, Y (2020). COVID-19'a karşı OECD ülkelerinin etkinliğinin VZA ile değerlendirilmesi. Turkish Studies, 15(4), 977-991. https://dx.doi.org/10.7827/ TurkishStudies.43718 google scholar
  • Sliogeriene, J., Turskis, Z., & Streimikiene, D. (2013). Analysis and choice of energy generation technologies: The multiple criteria assessment on the case study of Lithuania. Energy Procedia, 32: 11-20. google scholar
  • Triantaphyllou, E. (2000). Multi-Criteria Decision Making Methods: A comparative Study. Boston: Springer. google scholar
  • Turan, G. (2018). Çok Kriterli Karar Verme, (Ed.: Yıldırım, F.B. ve Önder E.) İşletmeciler, Mühendisler ve Yöneticiler için Operasyonel, Yönetsel ve Stratejik Problemlerin Çözümünde Çok Kriterli Karar Verme Yöntemleri (3. Baskı), (s.15-20). Bursa, Dora Yayıncılık. google scholar
  • Turskis, Z., & Zavadskas, E. K. (2010). A new additive ratio assesment (ARAS) method in multicriteria decision-making. Technological and Economic Development of Economy, (2): 159-172. google scholar
  • Vinodhini, G. A. F. (2020). Country ranking of COVID 19 using MCDM methods. Journal of Critical Reviews, 7(5): 1333-1338. google scholar
  • Worldometers. (2022). Covid-19 coronavirus pandemic. [Available online at: https://www. worldometers.info/coronavirus/ ], Retrieved on February 11, 2022. google scholar
  • Yiğit, A. (2020). The performance of OECD countries in combating with Covid 19 pandemics: A cross-sectional study. Journal of Current Researches on Social Sciences, 10(2): 399-416. google scholar
  • Zardari, N. H., Ahmed, K., Shirazi, S. M., & Yusop, Z. B. (2014). Weighting methods and their effects on multi-criteria decision making model outcomes in water resources management. Springer. google scholar
  • Zavadskas, E. K., Turskis, Z., & Vilutiene, T. (2010). Multiple criteria analysis of foundation instalment alternatives by applying Additive Ratio Assessment (ARAS) method. Archives of Civil and Mechanical Engineering, 10(3): 123-141. google scholar
  • Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika Ir Elektrotechnika, 122(6): 3-6. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Karakaş Geyik, S., Satman, M.H., & Kalyoncu, G. (2022). G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi. EKOIST Journal of Econometrics and Statistics, 0(37), 27-52. https://doi.org/10.26650/ekoist.2022.37.1161945


AMA

Karakaş Geyik S, Satman M H, Kalyoncu G. G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi. EKOIST Journal of Econometrics and Statistics. 2022;0(37):27-52. https://doi.org/10.26650/ekoist.2022.37.1161945


ABNT

Karakaş Geyik, S.; Satman, M.H.; Kalyoncu, G. G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi. EKOIST Journal of Econometrics and Statistics, [Publisher Location], v. 0, n. 37, p. 27-52, 2022.


Chicago: Author-Date Style

Karakaş Geyik, Seda, and Mehmet Hakan Satman and Gülin Kalyoncu. 2022. “G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi.” EKOIST Journal of Econometrics and Statistics 0, no. 37: 27-52. https://doi.org/10.26650/ekoist.2022.37.1161945


Chicago: Humanities Style

Karakaş Geyik, Seda, and Mehmet Hakan Satman and Gülin Kalyoncu. G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi.” EKOIST Journal of Econometrics and Statistics 0, no. 37 (May. 2023): 27-52. https://doi.org/10.26650/ekoist.2022.37.1161945


Harvard: Australian Style

Karakaş Geyik, S & Satman, MH & Kalyoncu, G 2022, 'G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi', EKOIST Journal of Econometrics and Statistics, vol. 0, no. 37, pp. 27-52, viewed 28 May. 2023, https://doi.org/10.26650/ekoist.2022.37.1161945


Harvard: Author-Date Style

Karakaş Geyik, S. and Satman, M.H. and Kalyoncu, G. (2022) ‘G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi’, EKOIST Journal of Econometrics and Statistics, 0(37), pp. 27-52. https://doi.org/10.26650/ekoist.2022.37.1161945 (28 May. 2023).


MLA

Karakaş Geyik, Seda, and Mehmet Hakan Satman and Gülin Kalyoncu. G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi.” EKOIST Journal of Econometrics and Statistics, vol. 0, no. 37, 2022, pp. 27-52. [Database Container], https://doi.org/10.26650/ekoist.2022.37.1161945


Vancouver

Karakaş Geyik S, Satman MH, Kalyoncu G. G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi. EKOIST Journal of Econometrics and Statistics [Internet]. 28 May. 2023 [cited 28 May. 2023];0(37):27-52. Available from: https://doi.org/10.26650/ekoist.2022.37.1161945 doi: 10.26650/ekoist.2022.37.1161945


ISNAD

Karakaş Geyik, Seda - Satman, MehmetHakan - Kalyoncu, Gülin. G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi”. EKOIST Journal of Econometrics and Statistics 0/37 (May. 2023): 27-52. https://doi.org/10.26650/ekoist.2022.37.1161945



ZAMAN ÇİZELGESİ


Gönderim15.08.2022
Kabul02.11.2022
Çevrimiçi Yayınlanma29.12.2022

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.