Araştırma Makalesi


DOI :10.26650/JGEOG2024-1438461   IUP :10.26650/JGEOG2024-1438461    Tam Metin (PDF)

Mekânsal ve Zamansal Perspektiften Ankara'daki Trafik Kazaları: Ölümlü ve Yaralanmalı Olayların Analizi

Seçkin FidanMutlu YılmazErsin AteşMerve Altundal Öncü

Trafik kazaları, insan yaşamına yönelik önemli tehditlere ve sosyo-ekonomik etkilere yol açan yaygın bir küresel sorundur. Trafik kazaları, nüfus ve araç sayısındaki artış nedeniyle daha yaygın hale gelmekte ve bu nedenle insan hayatı için ciddi tehditler oluşturmaktadır. Bu çalışma, 2013-2020 yılları arasında Ankara ilinde meydana gelen trafik kazalarının mekânsal ve zamansal niteliğini araştırmayı amaçlamaktadır. Bu kapsamda, trafik kazalarının zamansal özelliklerini analiz etmek için kazaların yıllık, aylık, günlük ve saatlik dağılımı incelenmiştir. Ayrıca, mekânsal özellikleri analiz etmek için optimize edilmiş sıcak nokta analizi ve mekânsal-zamansal özellikleri ortaya koymak için gelişen sıcak nokta analizi kullanılmıştır. Sonuçlar, kaza sayılarının 2018'e kadar arttığını, ancak son iki yılda belirgin bir azalma gösterdiğini ortaya koymaktadır. Özellikle 2020'deki düşüşün, COVID-19 salgınıyla yakından ilişkili olduğu vurgulanmaktadır. Ayrıca, yaz aylarında, hafta sonlarında, gece ve sabah saatlerinde ölümlü kazaların sayısında bir artış görülmektedir. Trafik kazalarının ve yaralanmaların mekânsal olarak şehir merkezinde, ölümlü kazaların ise sadece şehir merkezinde değil, aynı zamanda çevre ilçe ve illerle ulaşımı sağlayan karayollarında da kümelendiği tespit edilmiştir. Mekânsal-zamansal dağılım ise bu bölgelerde farklı sıcak nokta desenleri ile artan eğilimleri göstermektedir. Elde edilen sonuçlar, kazanın türüne ve trafik aktörlerine göre değişen zamansal ve mekânsal desenlerin olduğunu ortaya koymaktadır. Bu çalışma, Ankara'daki trafik kazalarının azaltılmasına yönelik etkili yol güvenliği politikalarının belirlenmesinde yerel ve ulusal kurumlara rehberlik etmeyi amaçlamaktadır.

DOI :10.26650/JGEOG2024-1438461   IUP :10.26650/JGEOG2024-1438461    Tam Metin (PDF)

Traffic Accidents in Ankara (Turkey) from a Spatiotemporal Perspective: Analysis of Fatalities and Injuries

Seçkin FidanMutlu YılmazErsin AteşMerve Altundal Öncü

Traffic accidents are a widespread global problem causing significant threats to human life and socioeconomic impacts. Traffic accidents are becoming more common due to the increase in population and the number of vehicles and therefore pose severe threats to human life. This study investigates the spatial and temporal characteristics of traffic accidents that occurred in Ankara between 2013 and 2020. In this context, the annual, monthly, daily, and hourly distribution of accidents were investigated to analyse the temporal characteristics of traffic accidents. In addition, Optimised Hot Spot Analysis was used to analyse the spatial characteristics, and Emerging Hot Spot Analysis was used to reveal spatiotemporal characteristics. The results reveal that the number of accidents increased until 2018 but showed a marked decrease in the last two years. It is emphasised that the decrease, especially in 2020, is closely related to the COVID-19 pandemic. In addition, there is an increase in the number of fatal accidents during the summer months, weekends, and night and morning hours. Traffic accidents and injuries are spatially clustered in the city centre, while fatal accidents are clustered not only in the city centre but also on the highways that provide access to the surrounding districts and provinces. The spatiotemporal distribution shows increasing trends with different hot spot patterns in these regions. The obtained results reveal that there are temporal and spatial patterns that vary according to the type of accident and traffic actors. This study guides local and national institutions in determining effective road safety policies to reduce traffic accidents in Ankara.


GENİŞLETİLMİŞ ÖZET


Traffic accidents are a major problem, causing the death and injury of thousands of people and significant economic costs. This research aims to examine the temporal and spatial distribution of fatal and injury-causing traffic accidents in Ankara, considering the traffic actors involved, to identify regions where accidents frequently occur and specific time intervals. In addition, it focuses on analysing accidents that occurred during the COVID-19 pandemic, aiming to understand potential changes during this period. The findings provide valuable insights to guide decision makers in improving traffic safety measures and reducing accidents.

For this purpose, traffic accident data from the Ankara province spanning the years 2013 to 2020 were utilised. Initially, temporal distribution analyses were conducted. In this context, the annual, monthly, weekly, daily, and hourly distribution of the number of accidents and fatalities and injuries of traffic actors (drivers, pedestrians, and passengers) were examined. In the second stage, Optimised Hot Spot Analysis was employed for spatial distribution analysis. In the final stage, Emerging Hot Spot Analysis, which considers both temporal and spatial distribution, was utilised.

The findings of the study indicate an increasing trend in traffic accidents until 2018, followed by a declining trend after 2018. In particular, the number of accidents in 2020 (n: 8,738) fell below the average (n: 10,682). A decreasing trend in traffic accidents has been observed globally and in Turkey recently. However, the association between the 2020 decrease and the COVID-19 pandemic is more robustly supported. The onset of the COVID-19 pandemic in 2020, marked by partial restrictions in March and subsequent lockdowns in April and May, led to a significant decrease in traffic accidents. This reduction was attributed to decreased public transportation usage and changes in drivers’ travel habits, which directly contributed to the observed decline in accidents. The time series captures a notable decrease during the COVID-19 quarantine period. Accident numbers start decreasing in March, reaching a minimum in April and May. Starting in June, with the gradual lifting of restrictions, accidents begin to increase, eventually returning to pre-quarantine levels.

Between May and October, a significant increase in traffic accidents was observed, particularly with a rise in fatal accidents during the summer. Additionally, traffic accidents and fatalities occur more frequently on weekends. While the intensity of traffic accidents is generally highest in morning in evening, fatal accidents tend to increase during nighttime and peak in the early morning hours. Moreover, driver fatalities usually rise from nighttime in early morning, whereas passenger fatalities only increase in the early morning hours. These results highlight the temporal variations in both traffic accidents and fatalities.

Optimised Hot Spot Analysis reveals a spatial clustering of traffic accidents and injuries in the city centre at a confidence level of 99%. However, fatal traffic accidents exhibit a distinct spatial distribution. Fatal accidents not only cluster in the city centre but also form prominent hot spot patterns along the highways connecting the surrounding districts and provinces. Furthermore, the spatial distribution of fatalities among traffic actors varies, encompassing both the city centre and the highways outside the city. Emerging hot spot analysis revealed distinct spatial clustering patterns in both the city centre and the surrounding highways. Traffic accidents tend to concentrate on the city centre, with decreasing hot spots, particularly in the eastern region, and intensifying hot spots in the western region. Trend analysis indicates a rising trend, especially in the west of the city centre, surrounding districts, and highways. Irregular, consecutive, and novel hot spot patterns have been identified for traffic accidents resulting in fatalities, with irregular hot spots prevailing in both the city centre and surrounding highways.

The results emphasise that traffic accidents and fatalities do not exhibit a uniform distribution but rather display temporal and spatial variations based on the type of accident and the traffic actors involved. The findings of this study highlight the importance of understanding these temporal and spatial differences, guiding the development of effective safety policies aimed at addressing traffic accidents.


PDF Görünüm

Referanslar

  • Ackaah, W., Apuseyine, B. A., & Afukaar, F. K. (2020). Road traffic crashes at night-time: characteristics and risk factors. International Journal of Injury Control and Safety Promotion, 27(3), 392-399. https://doi.org/10.1080/17457300.2020.1785508 google scholar
  • Akgüngör, A. P. (2007). Road traffic accidents and safety programme in Turkey. International Journal ofInjury Control and Safety Promotion, 14(2), 119-121. https://doi.org/10.1080/17457300701371961 google scholar
  • Anderson, T. K. (2009). Kernel density estimation and K-means clustering to profile road accident hotspots. 41, 359-364. https:// doi.org/10.1016/j.aap.2008.12.014 google scholar
  • Basagana, X., & de la Pena-Ramirez, C. (2023). Ambient temperature and risk of motor vehicle crashes: A countrywide analysis in Spain. Environmental Research, 216(October 2022). https://doi.org/10.1016/j.envres.2022.114599 google scholar
  • Chance Scott, M., Sen Roy, S., & Prasad, S. (2016). Spatial patterns of off-the-system traffic crashes in Miami-Dade County, Florida, during 2005-2010. Traffic Injury Prevention, 17(7), 729-735. https://doi.org/10.1080/15389588.2016.1144878 google scholar
  • Chand, A., Jayesh, S., & Bhasi, A. B. (2021). Road traffic accidents: An overview of data sources, analysis techniques and contributing factors. Materials Today: Proceedings, 47, 5135-5141. https://doi. org/10.1016/j.matpr.2021.05.415 google scholar
  • Chen, S., Kuhn, M., Prettner, K., & Bloom, D. E. (2019). The global macroeconomic burden of road injuries: estimates and projections for 166 countries. The Lancet Planetary Health, 3(9), e390-e398. https://doi.org/10.1016/S2542-5196(19)30170-6 google scholar
  • Colak, H. E., Memisoglu, T., Erbas, Y. S., & Bediroglu, S. (2018). Hot spot analysis based on network spatial weights to determine spatial statistics of traffic accidents in Rize, Turkey. Arabian Journal of Geosciences, 11(7). https://doi.org/10.1007/s12517-018-3492-8 google scholar
  • Diler, Z., Haybat, H., & Özlü, T. (2023). Trafik Kazalarının Zamansal ve Mekânsal İncelenmesi: Konya Şehri Örneği. 21, 248-276. https://doi.org/10.33688/aucbd.1257076 google scholar
  • Doherty, S. T., Andrey, J. C., & MacGregor, C. (1998). The situational risks of young drivers: The influence of passengers, time of day and day of week on accident rates. Accident Analysis and Prevention, 30(1), 45-52. https://doi.org/10.1016/S0001-4575(97)00060-2 google scholar
  • Erdogan, S. (2009). Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey. Journal of Safety Research, 40(5), 341-351. https://doi.org/10.1016/j. jsr.2009.07.006 google scholar
  • Erdogan, S., Yilmaz, I., Baybura, T., & Gullu, M. (2008). Geographical information systems aided traffic accident analysis system case study : city of Afyonkarahisar. 40, 174-181. https://doi. org/10.1016/j.aap.2007.05.004 google scholar
  • Erenler, A. K., & Gümüş, B. (2019). Analysis of Road Tra ffi c Accidents in Turkey between. Medicina, 55(10), 1-6. www.mdpi.com/journal/ medicina google scholar
  • ESRI (2024a) ArcGIS Pro Resources, Optimized Hot Spot Analysis (Spatial Statistics). google scholar
  • ESRI (2024b) ArcGIS Pro Resources, How emerging hot spot analysis works. google scholar
  • ESRI (2024c). ArcGIS Pro Resources, Emerging Hot Spot Analysis (Space Time Pattern Mining). google scholar
  • Foster, S., Gmel, G., Estevez, N., Bahler, C., & Mohler-Kuo, M. (2015). Temporal patterns of alcohol consumption and alcohol-related road accidents in young swiss men: Seasonal, weekday and public holiday effects. Alcohol and Alcoholism, 50(5), 565-572. https:// doi.org/10.1093/alcalc/agv037 google scholar
  • Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis, 24(3), 189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x google scholar
  • Gundogdu, I. B. (2010). Applying linear analysis methods to GIS-supported procedures for preventing traffic accidents : Case study of Konya. Safety Science, 48(6), 763-769. https://doi.org/10.1016/j. ssci.2010.02.016 google scholar
  • Gupta, M., Pawar, N. M., & Velaga, N. R. (2021). Impact of lockdown and change in mobility patterns on road fatalities during COVID-19 pandemic. Transportation Letters, 13(5-6), 447-460. https://doi.or g/10.1080/19427867.2021.1892937 google scholar
  • Hashimoto, S., Yoshiki, S., Saeki, R., & Mimura, Y. (2016). ScienceDirect Development and application of traffic accident density estimation models using kernel density estimation. Journal of Traffic and Transportation Engineering (English Edition), 3(3), 262-270. https://doi.org/10.1016/j.jtte.2016.01.005 google scholar
  • Haybat, H., & Karakaş, E. (2020). İzmir şehrinde meydana gelen trafik kazalarının günlük aktivite alanları ile ilişkisi. International Journal of Geography and Geography Education, 42, 429-454. https://doi. org/https://doi.org/10.32003/igge.670506 google scholar
  • Haybat, H., Zerenoğlu, H., Özlü, T. (2022). Temporal And Spatial Analysis Of Traffic Accidents : The Case Of Bursa City. International Journal of Geography and Geography Education, 45, 404-423. https://doi.Org/https://doi.org/10.32003/igge.1016204 google scholar
  • Hazaymeh, K., Almagbile, A., & Alomari, A. H. (2022). Spatiotemporal Analysis of Traffic Accidents Hotspots Based on Geospatial Techniques. ISPRS International Journal of Geo-Information, 11(4). https://doi.org/10.3390/ijgi11040260 google scholar
  • Infante, P., Jacinto, G., Afonso, A., Rego, L., Nogueira, P., Silva, M., Nogueira, V, Saias, J., Quaresma, P., Santos, D., G6is, P., & Manuel, P. R. (2023). Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal. Sustainability (Switzerland), 15(3), 1-16. https://doi.org/10.3390/su15032352 google scholar
  • Kang, Y., Cho, N., & Son, S. (2018). Spatiotemporal characteristics of elderly population’s traffic accidents in Seoul using space-time cube and space-time kernel density estimation. PLoS ONE, 13(5), 1-17. https://doi.org/10.1371/journal.pone.0196845 google scholar
  • Karacasu, M., Er, A., Bilgi, S., & Barut, H. B. (2011). Variations in traffic accidents on seasonal, monthly, daily and hourly basis: Eskisehir case. Procedia - Social and Behavioral Sciences, 20, 767775. https://doi.org/10.1016/j.sbspro.2011.08.085 google scholar
  • KGM (2023). Devlet ve il yolları envanteri, 2023. https://www.kgm. gov.tr google scholar
  • Kielminski, D., Atkinson, E., Peters, D., Willson, S., & Atkinson, T. (2023). Crash characteristics for classic/historic vehicles and comparisons to newer vehicles. Journal of Safety Research, 84, 18-23. https://doi.org/10.1016/j.jsr.2022.10.004 google scholar
  • Kundakçı, E. (2014). In Partial Fulfillment of The Requirements for The Degree of Master Science in Geodetic and Geographic Information Technologies. Graduate School of Natural and Applied Sciences of Middle East Technical University, January. google scholar
  • Lee, J. J., Kim, B. W., Kong, S. Y., Park, G. J., Chai, H. S., Kim, Y. M., Park, H. J., Kim, H., Lee, S. W., & Kim, S. C. (2023b). Age-specific characteristics of road traffic injuries among children and adolescents in South Korea. Traffic Injury Prevention, 24(6), 482487. https://doi.org/10.1080/15389588.2023.2212308 google scholar
  • Lee, J., Liu, H., & Abdel-Aty, M. (2023a). Changes in traffic crash patterns: Before and after the outbreak of COVID-19 in Florida. Accident Analysis and Prevention, 190(June), 107187. https://doi. org/10.1016/j.aap.2023.107187 google scholar
  • Ma, Q., Huang, G., & Tang, X. (2021). GIS-based analysis of spatial-temporal correlations of urban traffic accidents. European Transport Research Review, 13(1). https://doi.org/10.1186/s12544-021-00509-y google scholar
  • Mafi, S., Abdelrazig, Y., Amirinia, G., Kocatepe, A., Ulak, M. B., & Ozguven, E. E. (2019). Investigating exposure of the population to crash injury using a spatiotemporal analysis : A case study in Florida. Applied Geography, 104(December 2018), 42-55. https:// doi.org/10.1016/j.apgeog.2019.02.001 google scholar
  • Mohammed, S., Alkhereibi, A. H., Abulibdeh, A., Jawarneh, R. N., & Balakrishnan, P. (2023). GIS-based spatiotemporal analysis for road traffic crashes; in support of sustainable transportation Planning. Transportation Research Interdisciplinary Perspectives, 20(April), 100836. https://doi.org/10.1016/j.trip.2023.100836 google scholar
  • Oguzoglu, U. (2020). COVID-19 lockdowns and decline in traffic related deaths and injuries. IZA Discussion Paper, 13278. https:// doi.org/http://dx.doi.org/10.2139/ssrn.3608527 google scholar
  • Özcan, M., & Küçükönder, M. (2020). Investigation of Spatiotemporal Changes in the Incidence of Traffic Accidents in Kahramanmaraş, Turkey, Using GIS-Based Density Analysis. Journal of the Indian Society of Remote Sensing, 48(7), 1045-1056. https://doi. org/10.1007/s12524-020-01137-0 google scholar
  • Özlü, T., Haybat, H., & Zerenoğlu, H. (2021). Temporal and spatial analysis of traffic accidents: The case of Eskişehir City. International Journal of Geography and Geography Education (IGGE), 43, 136-158. google scholar
  • Özşahin, E., & Yılmaz, O. (2023). Tekirdağ İlinde Meydana Gelen Karayolu Trafik Kazalarının Zamansal ve Mekansal Analizi. Doğu Coğrafya Dergisi, 28(49), 52-62. https://doi.org/10.5152/EGJ.2023.23056 google scholar
  • Patwary, A. L., & Khattak, A. J. (2023). Crash harm before and during the COVID-19 pandemic: Evidence for spatial heterogeneity in Tennessee. Accident Analysis and Prevention, 183(September 2022), 106988. https://doi.org/10.1016/j.aap.2023.106988 google scholar
  • Puvanachandra, P., Hoe, C., Özkan, T., & Lajunen, T. (2012). Burden of Road Traffic Injuries in Turkey. Traffic Injury Prevention, 13(SUPPL. 1), 64-75. https://doi.org/10.1080/15389588.2011.633135 google scholar
  • Rahman, M. K., Crawford, T., & Schmidlin, T. W. (2018). Spatio-temporal analysis of road traffic accident fatality in Bangladesh integrating newspaper accounts and gridded population data. GeoJournal, 83(4), 645-661. https://doi.org/10.1007/s10708-017-9791-x google scholar
  • Saladie, Ö., Bustamante, E., & Gutierrez, A. (2020). COVID-19 lockdown and reduction of traffic accidents in Tarragona province, Spain. Transportation Research Interdisciplinary Perspectives, 8. https://doi.org/10.1016/j.trip.2020.100218 google scholar
  • Se, C., Champahom, T., Jomnonkwao, S., Kronprasert, N., & Ratanavaraha, V. (2022). The impact of weekday, weekend, and holiday crashes on motorcyclist injury severities: Accounting for temporal influence with unobserved effect and insights from out-of-sample prediction. Analytic Methods in Accident Research, 36, 100240. https://doi.org/10.1016/j.amar.2022.100240 google scholar
  • Suleiman, G., Dahamsheh, A. M., & Ergun, M. (2020). Assessment of fatal road traffic crashes in Turkey. International Journal of Safety and Security Engineering, 10(6), 733-737. https://doi.org/10.18280/ijsse.100602 google scholar
  • Sungur, İ., Akdur, R., & Piyal, B. (2014). Türkiye’deki trafik kazalarının analizi. Ankara Medical Journal, 14(3), 114-124. google scholar
  • TÜİK (2023a). Karayolu Trafik Kaza İstatistikleri, 2022. www.tuik.gov.tr TÜİK (2023b). Adrese dayalı nüfus kayıt sistemi sonuçları, 2023. www. tuik.gov.tr google scholar
  • TÜİK (2023c). İllere göre motorlu kara taşıtları sayısı, 2023. www.tuik.gov.tr TÜİK (2023d). İllere göre trafik kaza ölü ve yaralı sayısı, 2022. www. tuik.gov.tr google scholar
  • Uyarca, Ö., & Atılgan, İ. (2018). Ankara İlinde Meydana Gelen Trafik Kazalarının İncelenmesi. Kent Akademisi, 11 (4), 618-626. google scholar
  • Wang, M., Yi, J., Chen, X., Zhang, W., & Qiang, T. (2021). Spatial and Temporal Distribution Analysis of Traffic Accidents Using GIS-Based Data in Harbin. Journal of Advanced Transportation, 2021. https://doi.org/10.1155/2021/9207500 google scholar
  • Williams, S. B. (2018). Exploring Driver Behaviour under Conditions of Darkness: Shedding light on the night time traffic death toll. December. https://scholar.sun.ac.za google scholar
  • Wiratama, B. S., Chen, P. L., Chen, L. H., Saleh, W., Chen, S. K., Chen, H. T., Lin, H. A., & Pai, C. W. (2021). Evaluating the effects of holidays on road crash injuries in the United Kingdom. International Journal of Environmental Research and Public Health, 18(1), 1-14. https://doi.org/10.3390/ijerph18010280 google scholar
  • World Health Organization (WHO). Global Status Report on Road Safety 2023; 2023. google scholar
  • Xie, Z., & Yan, J. (2008). Kernel Density Estimation of traffic accidents in a network space. Computers, Environment and Urban Systems, 32(5), 396-406. https://doi.org/10.1016/j.compenvurbsys.2008.05.001 google scholar
  • Yıldırım, V., Yurdakul, E., Karaağaç, G. A., Koçer, M., & Uyguçgil, H. (2023). Eskişehir Kent Merkezindeki Trafik Kazalarının Zamana Bağlı. Turkish Journal of Remote Sensing and GIS, 4(1), 17-32. https://doi.org/https://doi.org/10.48123/rsgis.1167844 google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Fidan, S., Yılmaz, M., Ateş, E., & Altundal Öncü, M. (2024). Mekânsal ve Zamansal Perspektiften Ankara'daki Trafik Kazaları: Ölümlü ve Yaralanmalı Olayların Analizi. Coğrafya Dergisi, 0(48), 193-211. https://doi.org/10.26650/JGEOG2024-1438461


AMA

Fidan S, Yılmaz M, Ateş E, Altundal Öncü M. Mekânsal ve Zamansal Perspektiften Ankara'daki Trafik Kazaları: Ölümlü ve Yaralanmalı Olayların Analizi. Coğrafya Dergisi. 2024;0(48):193-211. https://doi.org/10.26650/JGEOG2024-1438461


ABNT

Fidan, S.; Yılmaz, M.; Ateş, E.; Altundal Öncü, M. Mekânsal ve Zamansal Perspektiften Ankara'daki Trafik Kazaları: Ölümlü ve Yaralanmalı Olayların Analizi. Coğrafya Dergisi, [Publisher Location], v. 0, n. 48, p. 193-211, 2024.


Chicago: Author-Date Style

Fidan, Seçkin, and Mutlu Yılmaz and Ersin Ateş and Merve Altundal Öncü. 2024. “Mekânsal ve Zamansal Perspektiften Ankara'daki Trafik Kazaları: Ölümlü ve Yaralanmalı Olayların Analizi.” Coğrafya Dergisi 0, no. 48: 193-211. https://doi.org/10.26650/JGEOG2024-1438461


Chicago: Humanities Style

Fidan, Seçkin, and Mutlu Yılmaz and Ersin Ateş and Merve Altundal Öncü. Mekânsal ve Zamansal Perspektiften Ankara'daki Trafik Kazaları: Ölümlü ve Yaralanmalı Olayların Analizi.” Coğrafya Dergisi 0, no. 48 (Sep. 2024): 193-211. https://doi.org/10.26650/JGEOG2024-1438461


Harvard: Australian Style

Fidan, S & Yılmaz, M & Ateş, E & Altundal Öncü, M 2024, 'Mekânsal ve Zamansal Perspektiften Ankara'daki Trafik Kazaları: Ölümlü ve Yaralanmalı Olayların Analizi', Coğrafya Dergisi, vol. 0, no. 48, pp. 193-211, viewed 9 Sep. 2024, https://doi.org/10.26650/JGEOG2024-1438461


Harvard: Author-Date Style

Fidan, S. and Yılmaz, M. and Ateş, E. and Altundal Öncü, M. (2024) ‘Mekânsal ve Zamansal Perspektiften Ankara'daki Trafik Kazaları: Ölümlü ve Yaralanmalı Olayların Analizi’, Coğrafya Dergisi, 0(48), pp. 193-211. https://doi.org/10.26650/JGEOG2024-1438461 (9 Sep. 2024).


MLA

Fidan, Seçkin, and Mutlu Yılmaz and Ersin Ateş and Merve Altundal Öncü. Mekânsal ve Zamansal Perspektiften Ankara'daki Trafik Kazaları: Ölümlü ve Yaralanmalı Olayların Analizi.” Coğrafya Dergisi, vol. 0, no. 48, 2024, pp. 193-211. [Database Container], https://doi.org/10.26650/JGEOG2024-1438461


Vancouver

Fidan S, Yılmaz M, Ateş E, Altundal Öncü M. Mekânsal ve Zamansal Perspektiften Ankara'daki Trafik Kazaları: Ölümlü ve Yaralanmalı Olayların Analizi. Coğrafya Dergisi [Internet]. 9 Sep. 2024 [cited 9 Sep. 2024];0(48):193-211. Available from: https://doi.org/10.26650/JGEOG2024-1438461 doi: 10.26650/JGEOG2024-1438461


ISNAD

Fidan, Seçkin - Yılmaz, Mutlu - Ateş, Ersin - Altundal Öncü, Merve. Mekânsal ve Zamansal Perspektiften Ankara'daki Trafik Kazaları: Ölümlü ve Yaralanmalı Olayların Analizi”. Coğrafya Dergisi 0/48 (Sep. 2024): 193-211. https://doi.org/10.26650/JGEOG2024-1438461



ZAMAN ÇİZELGESİ


Gönderim16.02.2024
Kabul16.05.2024
Çevrimiçi Yayınlanma05.07.2024

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.