Araştırma Makalesi


DOI :10.26650/tjbc.1225198   IUP :10.26650/tjbc.1225198    Tam Metin (PDF)

Genetic Structure of Anopheles sacharovi (Diptera: Culicidae) Populations from Türkiye

Evin GünençRümeysa Yeşim ManapElif ÇelikkolAleyna ÇağanSezer YalçınErsin Doğaç

Objective: The Anopheles maculupennis complex is known to be a vector of malaria in Türkiye. Anopheles sacharovi is a member of the Anopheles maculipennis complex and is a major vector of malaria in Europe and the Middle East capable of transmitting both Plasmodium vivax and P. falciparum. The genetic diversity and population structure of the six populations of Anopheles sacharovi from Türkiye are studied here using the random amplified polymorphic DNA (RAPD) marker. Materials and Methods: Anopheles sacharovi samples were collected from Muğla, Aydın, İzmir, Çanakkale, Balıkesir, and Denizli. Total DNA was extracted using the Lifton method, and a total of 120 individuals were screened using six RAPD primers. Results: A total of 300 loci were observed in the six primers. Very close genetic diversity was observed in the studied populations. The number of alleles (na ) observed for all populations was 1.55 ± 0.49, and the mean number of effective alleles (ne ) was 1.23 ± 0.31. The ratio of polymorphic loci for all populations ranged between 50.33%-60.33%, and Nei’s genetic diversity (h) ranged between 0.1253-0.1576. The gene flow level (Nm) was 2.08, and the genetic differentiation value (Gst) was 0.19. The conclusions from the unweighted pair group arithmetic mean analysis (UPGMA) was inclined to be homogeneous on the whole, with the İzmir population being clearly separated from the rest. Conclusion: Regional environmental conditions such as human-mediated transport, agricultural implementations, and discrepancies in vector control strategies might be considered agents in forming the genetic structure of this species in İzmir. Understanding the gene flow rates and phylogenetic relationships between vector species are very important for applying sustainable and effective pest management. This study ensures helpful knowledge for better understanding the population genetic structure of An. sacharovi populations in Türkiye.


PDF Görünüm

Referanslar

  • Akıner, M. M., Simsek, F. M. & Caglar, S. S. (2009). Insecticide resistance of Culex pipiens (Diptera: Culicidae) in Turkey. Journal of Pesticide Science, 34(4), 259-264. https:// doi.org/10.1584/jpestics.G09-28 google scholar
  • Alphey, N. & Bonsall, M. B. (2018). Genetics-based methods for agricultural insect pest management. Agricultural and Forest Entomology, 20(2), 131- 140. https://doi.org/10.1111/afe.12241 google scholar
  • Alten, B. & Çağlar, S. S. (1998). Vektör ekolojisi ve mücadelesi (1st ed.). Ankara, Turkey: TC Sağlık Bakanlığı Sağlık Projesi Genel Koordinatörlüğü Bizim Büro Basımevi. google scholar
  • Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M. B., Dahl, C. & Kaiser, A. (2010). Mosquitoes and their control. Berlin, Almanya: Springer Science & Business Media. google scholar
  • Bender, W., Spierer, P., Hogness, D. S. & Chambon, P. (1983). Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. Journal of Molecular Biology, 168(1), 17-33. https://doi.org/10.1016/S0022-2836(83)80320-9 google scholar
  • Braginets, O. P., Minakawa, N., Mbogo, C. M. & Yan, G. (2003). Population genetic structure of the African malaria mosquito Anopheles funestus in Kenya. The American Journal of Tropical Medicine and Hygiene, 69(3), 303-308. https://doi.org/10.4269/ ajtmh.2003.69.303 google scholar
  • Çağlar, S. S., Skavdis, G., Özer, N., Alten, B., Şimşek, M. F., Kaynaş, S., ... & Vontas, J. (2008). Study of the resistance in commonly used insecticides, of natural mosguito populations, in the province of thrace (Greece and Turkey). Proceedings of the TÜBİTAK TBAG Project, 1-128. DOI: 105T531 google scholar
  • Dimopoulos, G., Zheng, L., Kumar, V., Della Torre, A., Kafatos, F. C. & Louis, C. (1996). Integrated genetic map of Anopheles gambiae: use of RAPD polymorphisms for genetic, cytogenetic and STS landmarks. Genetics, 143(2), 953-960. https://doi. org/10.1093/genetics/143.2.953 google scholar
  • Djadid, N. D., Gholizadeh, S., Tafsiri, E., Romi, R., Gordeev, M. & Zakeri, S. (2007). Molecular identification of Palearctic members of Anopheles maculipennis in northern Iran. Malaria Journal, 6(1), 1-10. http://dx.doi.org/10.1186/1475-2875-6-6 google scholar
  • Dogan, H. M., Cetin, I. & Egri, M. (2010). Spatiotemporal change and ecological modelling of malaria in Turkey by means of geographic information systems. Transactions of the Royal Society of Tropical Medicine and Hygiene, 104(11), 726-732. https://doi.org/10.1016/j.trstmh.2010.08.003 google scholar
  • Elisa Posso, C., González, R., Cárdenas, H., Gallego, G., Duque, M. C. & Suarez, M. F. (2003). Random amplified polymorphic DNA analysis of Anopheles nuneztovari (Diptera: Culicidae) from Western and Northeastern Colombia. Memórias do Instituto Oswaldo Cruz, 98, 469-476. https://doi.org/10.1590/ s0074-02762003000400007 google scholar
  • Elisa Posso, C. E., Gonzalez, R., Cárdenas, H. & Tascón, R. (2006). Estructura genética de Anopheles darlingi Root, An. nuneztovari Gabaldon y An. marajoara Galvao & Damasceno de Colombia mediante RAPD-PCR. Revista Colombiana de Entomología, 32(1), 49-56. https://doi.org/10.25100/socolen.v32i1.9358 google scholar
  • Favia, G., Dimopouios, G. & Louis, C. (1994). Analysis of the Anopheles gambiae genome using RAPD markers. Insect Molecular Biology, 3(3), 149-157. https://doi.org/10.1111/j.1365-2583.1994.tb00162.x google scholar
  • Glick, J. I. (1992). Illustrated key to the female Anopheles of southwestern Asia and Egypt (Diptera: Culicidae). Walter Reed Biosystematics Unit Washington DC. Accession Number: ADA512189. google scholar
  • González, R., Wilkerson, R., Fidel Suárez, M., García, F., Gallego, G., Cárdenas, H., ... & Cristina Duque, M. (2007). A population genetics study of Anopheles darlingi (Diptera: Culicidae) from Colombia based on random amplified polymorphic DNA-polymerase chain reaction and amplified fragment lenght polymorphism markers. Memórias do Instituto Oswaldo Cruz, 102, 255-262. https://doi.org/10.1590/s0074-02762007005000037 google scholar
  • Harbach, R. E. & Kitching, I. J. (2016). The phylogeny of Anophelinae revisited: inferences about the origin and classification of Anopheles (Diptera: Culicidae). Zoologica Scripta, 45(1), 3447. https://doi.org/10.1111/zsc.12137 google scholar
  • Kaddumukasa, M. A., Wright, J., Muleba, M., Stevenson, J. C., Norris, D. E. & Coetzee, M. (2020). Genetic differentiation and population structure of Anopheles funestus from Uganda and the southern African countries of Malawi, Mozambique, Zambia and Zimbabwe. Parasites & Vectors, 13(1), 1-13. https://doi. org/10.1186/s13071-020-3962-1 google scholar
  • Kelly, J. D. (1995). Use of random amplified polymorphic DNA markers in breeding for major gene resistance to plant pathogens. HortScience, 30(3), 461-465. https://journals.ashs. org/downloadpdf/journals/hortsci/30/3/article-p461.pdf google scholar
  • Kengne, P., Trung, H. D., Baimai, V., Coosemans, M. & Manguin, S. (2001). A multiplex PCR-based method derived from random amplified polymorphic DNA (RAPD) markers for the identification of species of the Anopheles minimus group in Southeast Asia. Insect Molecular Biology, 10(5), 427-435. https://doi.org/10.1046/j.0962-1075.2001.00281.x google scholar
  • Michel, A. P., Ingrasci, M. J., Schemerhorn, B. J., Kern, M., Le Goff, G., Coetzee, M., ... & Besansky, N. J. (2005). Rangewide population genetic structure of the African malaria vector Anopheles funestus. Molecular Ecology, 14(14), 4235-4248. https://doi.org/10.1111/j.1365-294X.2005.02754.x google scholar
  • Ogola, E. O., Odero, J. O., Mwangangi, J. M., Masiga, D. K. & Tchouassi, D. P. (2019). Population genetics of Anopheles funestus, the African malaria vector, Kenya. Parasites & Vectors, 12(1), 1-9. https://doi.org/10.1186/s13071-018-3252-3 google scholar
  • Ozbilgin, A., Topluoglu, S., Es, S., Islek, E., Mollahaliloglu, S. & Erkoc, Y. (2011). Malaria in Turkey: successful control and strategies for achieving elimination. Acta Tropica, 120(1-2), 15-23. https://doi.org/10.1016/j.actatropica.2011.06.011 google scholar
  • Peakall, R. O. D. & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288-295. https://doi. org/10.1111/j.1471-8286.2005.01155.x google scholar
  • Pinedo-Cancino, V., Sheen, P., Tarazona-Santos, E., Oswald, W. E., Jeri, C., Vittor, A.Y., ... & Gilman, R. H. (2006). Limited diversity of Anopheles darlingi in the Peruvian Amazon region of Iquitos. The American Journal of Tropical Medicine and Hygiene, 75(2), 238. https://doi.org/10.4269/ajtmh.2006.75.238 google scholar
  • Ramsdale, C. D., Alten, B., Caglar, S. S. & Ozer, N. (2001). A revised, annotated checklist of the mosquitoes (Diptera, Culicidae) of Turkey. European Mosquito Bulletin, 9, 18-28. google scholar
  • Rita, Z., Gurusubramanian, G. & Kumar, N. S. (2014). Random Amplified Polymorphic DNA (RAPD) reveals genetic diversity among Anopheles (Diptera: Culicidae) species. Science and Technology, 2(1), 36-44. Available: https://www.researchgate. net/publication/280610489_Random_Amplified_Polymorphic_ DNA_RAPD_reveals_genetic_diversity_among_Anopheles_ Diptera_Culicidae_species. Accessed on December 21, 2022. google scholar
  • Rongnoparut, P., Sirichotpakorn, N., Rattanarithikul, R., Yaicharoen, S., & Linthicum, K. J. (1999). Estimates of gene flow among Anopheles maculatus populations in Thailand using microsatellite analysis. The American Journal of Tropical Medicine and Hygiene, 60(3), 508-515. https://doi.org/10.4269/ ajtmh.1999.60.508 google scholar
  • Sedaghat, M. M., Linton, Y. M., Nicolescu, G., Smith, L., Koliopoulos, G., Zounos, A. K., ... & Harbach, R. E. (2003). Morphological and molecular characterization of Anopheles (Anopheles) sacharovi Favre, a primary vector of malaria in the Middle East. Systematic Entomology, 28(2), 241-256. https:// doi.org/10.1046/j.1365-3113.2003.00211.x google scholar
  • Silva-do-Nascimento, T. F., Wilkerson, R. C., Lourengo-de-Oliveira, R. & Monteiro, F. A. (2006). Molecular confirmation of the specific status of Anopheles halophylus (Diptera: Culicidae) and evidence of a new cryptic species within An. triannulatus in central Brazil. Journal of Medical Entomology, 43(3), 455459. https://doi.org/10.1603/0022-2585(2006)43[455:MCOT SS]2.0.CO;2 google scholar
  • Slatkin, M. (1985). Rare alleles as indicators of gene flow. Evolution, 39(1), 53-65. https://doi.org/10.2307/2408516 google scholar
  • Taskin, B. G., Dogaroglu, T., Kilic, S., Dogac, E. & Taskin, V. (2016). Seasonal dynamics of insecticide resistance, multiple resistance, and morphometric variation in field populations of Culex pipiens. Pesticide Biochemistry and Physiology, 129, 14-27. https://doi.org/10.1016/j.pestbp.2015.10.012 google scholar
  • Tyagi, V., Sharma, A. K., Yadav, R., Adak, T., Sukumaran, D., Agrawal, O. P. & Veer, V. (2015). Implication of Random Amplified Polymorphic DNA method for differentiating Anopheles culicifacies sibling species. European Journal of Biotechnology & Bioscience, 3(8), 47-54. Accessed:https:// www.researchgate.net/publication/299392501_Implication_ of_Random_Amplified_Polymorphic_DNA_method_for_ differentiating_Anopheles_culicifacies_sibling_species google scholar
  • Willi, Y., Van Buskirk, J., Schmid, B., & Fischer, M. (2006). Genetic isolation of fragmented populations is exacerbated by drift and selection. Journal of Evolutionary Biology, 20, 534- 542. https://doi.org/10.1111/j.1420-9101.2006.01263.x google scholar
  • Wilkerson, R. C., Parsons, T. J., Albright, D. G., Klein, T. A. & Braun, M. J. (1993). Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles). Insect Molecular Biology, 1(4), 205-211. https://doi.org/10.1111/j.1365-2583.1993.tb00093.x google scholar
  • Yavaşoglu, S. İ., Yaylagül, E. Ö., Akıner, M. M., Ülger, C., Çağlar, S.S. & Şimşek, F.M. (2019). Current insecticide resistance status in Anopheles sacharovi and Anopheles superpictus populations in former malaria endemic areas of Turkey. Acta Tropica, 193, 148-157. https://doi.org/10.1016/j.actatropica.2019.02.003 google scholar
  • Yeh, F. C., Boyle, T., Rongcai, Y., Ye, Z. & Xiyan, J. M. (1999). POPGENE VERSION 1.32 Microsoft window-based Freeware for Population Genetic Analysis. Available: http://www. ualberta.ca/_fyeh/. accessed on May 12, 2020. google scholar
  • Zhou, X., Faktor, O., Applebaum, S. W., & Coll, M. (2000). Population structure of the pestiferous moth Helicoverpa armigera in the eastern Mediterranean using RAPD analysis. Heredity, 85, 251256. https://doi.org/10.1046/j.1365-2540.2000.00738.x google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Günenç, E., Manap, R.Y., Çelikkol, E., Çağan, A., Yalçın, S., & Doğaç, E. (2023). Genetic Structure of Anopheles sacharovi (Diptera: Culicidae) Populations from Türkiye. Turkish Journal of Bioscience and Collections, 7(1), 1-9. https://doi.org/10.26650/tjbc.1225198


AMA

Günenç E, Manap R Y, Çelikkol E, Çağan A, Yalçın S, Doğaç E. Genetic Structure of Anopheles sacharovi (Diptera: Culicidae) Populations from Türkiye. Turkish Journal of Bioscience and Collections. 2023;7(1):1-9. https://doi.org/10.26650/tjbc.1225198


ABNT

Günenç, E.; Manap, R.Y.; Çelikkol, E.; Çağan, A.; Yalçın, S.; Doğaç, E. Genetic Structure of Anopheles sacharovi (Diptera: Culicidae) Populations from Türkiye. Turkish Journal of Bioscience and Collections, [Publisher Location], v. 7, n. 1, p. 1-9, 2023.


Chicago: Author-Date Style

Günenç, Evin, and Rümeysa Yeşim Manap and Elif Çelikkol and Aleyna Çağan and Sezer Yalçın and Ersin Doğaç. 2023. “Genetic Structure of Anopheles sacharovi (Diptera: Culicidae) Populations from Türkiye.” Turkish Journal of Bioscience and Collections 7, no. 1: 1-9. https://doi.org/10.26650/tjbc.1225198


Chicago: Humanities Style

Günenç, Evin, and Rümeysa Yeşim Manap and Elif Çelikkol and Aleyna Çağan and Sezer Yalçın and Ersin Doğaç. Genetic Structure of Anopheles sacharovi (Diptera: Culicidae) Populations from Türkiye.” Turkish Journal of Bioscience and Collections 7, no. 1 (Sep. 2024): 1-9. https://doi.org/10.26650/tjbc.1225198


Harvard: Australian Style

Günenç, E & Manap, RY & Çelikkol, E & Çağan, A & Yalçın, S & Doğaç, E 2023, 'Genetic Structure of Anopheles sacharovi (Diptera: Culicidae) Populations from Türkiye', Turkish Journal of Bioscience and Collections, vol. 7, no. 1, pp. 1-9, viewed 11 Sep. 2024, https://doi.org/10.26650/tjbc.1225198


Harvard: Author-Date Style

Günenç, E. and Manap, R.Y. and Çelikkol, E. and Çağan, A. and Yalçın, S. and Doğaç, E. (2023) ‘Genetic Structure of Anopheles sacharovi (Diptera: Culicidae) Populations from Türkiye’, Turkish Journal of Bioscience and Collections, 7(1), pp. 1-9. https://doi.org/10.26650/tjbc.1225198 (11 Sep. 2024).


MLA

Günenç, Evin, and Rümeysa Yeşim Manap and Elif Çelikkol and Aleyna Çağan and Sezer Yalçın and Ersin Doğaç. Genetic Structure of Anopheles sacharovi (Diptera: Culicidae) Populations from Türkiye.” Turkish Journal of Bioscience and Collections, vol. 7, no. 1, 2023, pp. 1-9. [Database Container], https://doi.org/10.26650/tjbc.1225198


Vancouver

Günenç E, Manap RY, Çelikkol E, Çağan A, Yalçın S, Doğaç E. Genetic Structure of Anopheles sacharovi (Diptera: Culicidae) Populations from Türkiye. Turkish Journal of Bioscience and Collections [Internet]. 11 Sep. 2024 [cited 11 Sep. 2024];7(1):1-9. Available from: https://doi.org/10.26650/tjbc.1225198 doi: 10.26650/tjbc.1225198


ISNAD

Günenç, Evin - Manap, RümeysaYeşim - Çelikkol, Elif - Çağan, Aleyna - Yalçın, Sezer - Doğaç, Ersin. Genetic Structure of Anopheles sacharovi (Diptera: Culicidae) Populations from Türkiye”. Turkish Journal of Bioscience and Collections 7/1 (Sep. 2024): 1-9. https://doi.org/10.26650/tjbc.1225198



ZAMAN ÇİZELGESİ


Gönderim28.12.2022
Kabul02.02.2023
Çevrimiçi Yayınlanma09.03.2023

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.