Structural and Functional Investigation of the Brain with Magnetic Resonance Imaging
Ulaş Ay, Emre Harı, Elif Kurt, Kardelen Yıldırım, Tamer DemiralpThe imaging of the brain structure and function with non-invasive methods provides important information about the large-scale organization of the complex neural circuits in the brain and their associations with sensory, motor, and cognitive functions. Among a range of neuroimaging modalities that can capture static or dynamic information about brain’s organization, the magnetic resonance imaging (MRI) is one that provides unprecedented possibilities for the spatial description of both structural and functional properties. The functional MRI (fMRI) depends on the hemodynamic response measured by means of the blood oxygen level dependent (BOLD) signal, which due to slowness of the vascular response in comparison with the neuronal activity, has limitations in reflecting the temporal dynamics of brain functional activities. However, it provides a perfect spatial definition of both the segregated local activations as well as the integrative network patterns. Due to the possibilities for detailed structural imaging of the gray (GM) and white matter (WM) structures, tracing the WM tracts and structural connectivities and capturing the functional activations and functional connectivities, the MRI technique provides a comprehensive scope to brain organization and allows the visualization of both intrinsic states and task-related responses of the brain. Additionally, the adaptation of advanced signal and image analysis techniques to MRI analysis and use of advanced statistical approaches have evolved the MRI-based neuroimaging modalities to mostly preferred brain mapping tools. In this chapter, we will present basic information about the analysis methods for structural and functional MRI, and some exemplary applications.
References
- 1. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann J, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 1993;64(3), 803-12. google scholar
- 2. Despotovic I, Goossens B, Philips W. MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015;450341. google scholar
- 3. Yaakub SN, Heckemann RA, Keller SS, McGinnity CJ, Weber B, Hammers A. On brain atlas choice and automatic segmentation methods: a comparison of MAPER & FreeSurfer using three atlas databases. Sci. Rep. 2020;10(1), 2837. google scholar
- 4. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: auto-mated labeling of neuroanatomical structures in the human brain. Neuron 2002;33(3), 341-355. google scholar
- 5. Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E, Alzheimer’s Disease Neuroimaging Initiative. CAT-A computational anatomy toolbox for the analysis of structural MRI data. GigaScience 2024;13, giae049. google scholar
- 6. Mechelli A, Price CJ, Friston, KJ, Ashburner J. Voxel-based morphometry of the human brain: methods and applications. Curr Med Imaging 2005;1(2), 105-113. google scholar
- 7. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31(3), 968-980. google scholar
- 8. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi-modal parcellation of human cerebral cortex. Nature 2016;536(7615), 171-178. google scholar
- 9. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 2018;28(9), 3095-3114. google scholar
- 10. Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. Neuroimage 2020;206, 116189. google scholar
- 11. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage 2015;115, 117-137. google scholar
- 12. Iglesias JE, Insausti R, Lerma-Usabiaga G, Bocchetta M, Van Leemput K, Greve DN, et al. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 2018;183, 314-326. google scholar
- 13. Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJ, Boyd E, Reuter M, et al. High-resolution mag-netic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. Neuroimage 2017;155, 370-382. google scholar
- 14. Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the human subcortex unve-iled with functional connectivity gradients. Nat. Neurosci 2020;23(11), 1421-1432. google scholar
- 15. Fischl B. FreeSurfer. Neuroimage 2012;62(2), 774-781. google scholar
- 16. Breznik E, Malmberg F, Kullberg J, Ahlström H, Strand R. Multiple comparison correction methods for whole-body magnetic resonance imaging. J. Med. Imaging 2020;7(1), 014005-014005. google scholar
- 17. Goto M, Abe O, Hagiwara A, Fujita S, Kamagata K, Hori M, et al. Advantages of using both voxel-and surface-based morphometry in cortical morphology analysis: a review of various applications. Magn Reson Med Sci 2022;21(1), 41-57. google scholar
- 18. Backhausen LL, Herting MM, Tamnes CK, Vetter NC. Best practices in structural neuroimaging of neuro-developmental disorders. Neuropsychol. Rev. 2022;32(2), 400-418. google scholar
- 19. Hari E, Kurt E, Bayram A, Kizilates-Evin G, Acar B, Demiralp T, et al. Volumetric changes within hippo-campal subfields in Alzheimer’s disease continuum. Neurol. Sci. 2022;43(7), 4175-4183. google scholar
- 20. Ay U, Yıldırım Z, Erdogdu E, Kicik A, Ozturk-Isik E, Demiralp T, et al. Shrinkage of olfactory amygdala connotes cognitive impairment in patients with Parkinson’s disease. Cogn Neurodyn 2023;17, 1309-1320. google scholar
- 21. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 2000;97(20), 11050-11055. google scholar
- 22. Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation. Neuroimage 2013;65, 336-348. google scholar
- 23. Ay U, Kizilates-Evin G, Bayram A, Kurt E, Demiralp T. Comparison of FreeSurfer and CAT12 software in parcel-based cortical thickness calculations. Brain Topogr. 2022;35(5-6), 572-582. google scholar
- 24. Merten N, Kramme J, Breteler MM, Herholz SC. Previous musical experience and cortical thickness relate to the beneficial effect of motor synchronization on auditory function. Front. Neurosci. 2019;13, 1042. google scholar
- 25. Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L, et al. Dynamic development of regional cortical thickness and surface area in early childhood. Cereb. Cortex 2015;25(8), 2204-2212. google scholar
- 26. Hari E, Kurt E, Ulasoglu-Yildiz C, Bayram A, Bilgic B, Demiralp T, et al. Morphometric analysis of medial temporal lobe subregions in Alzheimer’s disease using high-resolution MRI. Brain Struct. Funct. 2023;228(8), 1885-1899. google scholar
- 27. Uribe C, Segura B, Baggio HC, Abos A, Garcia-Diaz AI, Campabadal A, et al. Progression of Parkinson’s disease patients’ subtypes based on cortical thinning: 4-year follow-up. Parkinsonism Relat Disord 2019;64, 286-292. google scholar
- 28. Conti A, Treaba CA, Mehndiratta A, Barletta VT, Mainero C, Toschi N. An interpretable machine learning model to predict cortical atrophy in multiple sclerosis. Brain Sci. 2023;13(2), 198. google scholar
- 29. Azzony S, Moria K, Alghamdi J. Detecting Cortical Thickness Changes in Epileptogenic Lesions Using Machine Learning. Brain Sci. 2023;13(3), 487. google scholar
- 30. Zhao Y, Zhang Q, Shah C, Li Q, Sweeney JA, Li F, et al. Cortical thickness abnormalities at different stages of the illness course in schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry 2022;79(6):560-570. google scholar
- 31. Eyler LT, Prom-Wormley E, Panizzon MS, Kaup AR, Fennema-Notestine C, Neale MC. Genetic and en-vironmental contributions to regional cortical surface area in humans: a magnetic resonance imaging twin study. Cereb. Cortex 2011;21(10), 2313-2321. google scholar
- 32. Cheng W, Frei O, van der Meer D, Wang Y, O’Connell KS, Chu Y, et al. Genetic association between schizophrenia and cortical brain surface area and thickness. JAMA Psychiatry 2021;78(9), 1020-1030. google scholar
- 33. Wei X, Wang Z, Zhang M, Li M, Chen YC, Lv H, et al. Brain surface area alterations correlate with gait impairments in Parkinson’s disease. Front. Aging Neurosci. 2022;14, 806026. google scholar
- 34. Tondelli M, Vaudano AE, Ruggieri A, Meletti S. Cortical and subcortical brain alterations in juvenile absence epilepsy. NeuroImage: Clinical 2016;12, 306-311. google scholar
- 35. Lamballais S, Vinke EJ, Vernooij MW, Ikram MA, Muetzel RL. Cortical gyrification in relation to age and cognition in older adults. Neuroimage 2020;212, 116637. google scholar
- 36. Lyu I, Kim SH, Girault JB, Gilmore JH, Styner MA. A cortical shape-adaptive approach to local gyrifica-tion index. Med Image Anal 2018;48, 244-258. google scholar
- 37. Li M, Yan J, Wen H, Lin J, Liang L, Li S, et al. Cortical thickness, gyrification and sulcal depth in trige-minal neuralgia. Sci. Rep. 2021;11(1), 16322. google scholar
- 38. Gudbrandsen M, Mann C, Bletsch A, Daly E, Murphy CM, Stoencheva V, et al. Patterns of cortical folding associated with autistic symptoms in carriers and noncarriers of the 22q11. 2 microdeletion. Cereb. Cortex 2020;30(10), 5281-5292. google scholar
- 39. Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci. 2013;14(5), 322-336. google scholar
- 40. Sampaio-Baptista C, Johansen-Berg H. White matter plasticity in the adult brain. Neuron 2017;96(6), 1239-1251. google scholar
- 41. Femir-Gurtuna B, Kurt E, Ulasoglu-Yildiz C, Bayram A, Yildirim E, Soncu-Buyukiscan E, et al. White-matter changes in early and late stages of mild cognitive impairment. J. Clin. Neurosci. 2020;78, 181-184. google scholar
- 42. Gartia-Lorenzo D, Francis S, Narayanan S, Arnold DL, Collins DL. Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med Image Anal 2013;17(1), 1-18. google scholar
- 43. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18(7), 684-696. google scholar
- 44. Wang Y, Liu G, Hong D, Chen F, Ji X, Cao G. White matter injury in ischemic stroke. Prog. Neurobiol. 2016;141, 45-60. google scholar
- 45. Piana RL, Tonduti D, Dressman HG, Schmidt JL, Murnick J, Brais B, et al. Brain magnetic resonance imaging (MRI) pattern recognition in Pol III-related leukodystrophies. J. Child Neurol. 2014;29(2), 214-220. google scholar
- 46. Tillema JM, Pirko I. Neuroradiological evaluation of demyelinating disease. Ther. Adv. Neurol. Disord. 2013;6(4), 249-268. google scholar
- 47. Jones DK, Leemans A. Diffusion tensor imaging. Methods Mol Biol. 2011;711,127-144. google scholar
- 48. Soares JM, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Front. Neurosci. 2013;7, 31. google scholar
- 49. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31(4), 1487-1505. google scholar
- 50. Hari E, Kizilates-Evin G, Kurt E, Bayram A, Ulasoglu-Yildiz C, Gurvit H, et al. Functional and structural connectivity in the Papez circuit in different stages of Alzheimer’s disease. Clin Neurophysiol 2023;153, 33-45. google scholar
- 51. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WYI, Dai G, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 2008;41(4), 1267-1277. google scholar
- 52. Jenkinson M, Chappell M. Introduction to neuroimaging analysis. Oxford University Press 2018. google scholar
- 53. Dubey A, Kataria R, Sinha V. Role of diffusion tensor imaging in brain tumor surgery. Asian J. Neurosurg. 2018;13(02), 302-306. google scholar
- 54. Monti MM. Statistical analysis of fMRI time-series: a critical review of the GLM approach. Front. Hum. Neurosci. 2011;5, 28. google scholar
- 55. Filippi S, Cappe O, Garivier A, Szepesvari C. Parametric bandits: The generalized linear case. Adv. Neural Inf. Process. Syst. 2010;23. google scholar
- 56. Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1), 13-36. google scholar
- 57. Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL. Intrinsic architecture underlying the rela-tions among the default, dorsal attention, and frontoparietal control networks of the human brain. J. Cogn. Neurosci. 2013;25(1), 74-86. google scholar
- 58. Harı E, Ay U, Neşe H, Bayram A, Demiralp T. Magnetic resonance imaging based functional connectivity methods. J Ist Faculty Med 2020;83 (1), 71-80. google scholar
- 59. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34(4), 537-541. google scholar
- 60. Seitzman BA, Snyder AZ, Leuthardt EC, Shimony JS. The state of resting state networks. Top Magn Reson Imaging 2019;28(4), 189. google scholar
- 61. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using inde-pendent component analysis. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2005;360(1457), 1001-1013. google scholar
- 62. Shulman GL, Corbetta M, Buckner RL, Fiez JA, Miezin FM, Raichle ME, et al. Common blood flow chan-ges across visual tasks: I. Increases in subcortical structures and cerebellum but not in nonvisual cortex. J. Cogn. Neurosci. 1997;9(5), 624-647. google scholar
- 63. Raichle ME. The brain’s default mode network. Annu. Rev. Neurosci. 2015;38, 433-447. google scholar
- 64. Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron 2008;58(3):306-324. google scholar
- 65. Seeley WW. The salience network: a neural system for perceiving and responding to homeostatic demands. J Neurosci 2019;39(50):9878-9882. google scholar
- 66. Gratton C, Sun H, Petersen SE. Control networks and hubs. Psychophysiology 2018;55(3):1-18. google scholar
- 67. Poldrack RA, Mumford JA, Nichols TE. Handbook of Functional MRI Data Analysis. Cambridge Univer-sity Press, Cambridge; 2001. google scholar
- 68. Van den Heuvel MP and Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010;20:519-534. google scholar
- 69. Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput 1995;7:1129-1159. google scholar
- 70. Beckmann CF. Modeling with independent components. Neuroimage 2012;62(2):891901. google scholar
- 71. Taylor JJ, Kurt HG, Anand A. Resting State Functional Connectivity Biomarkers of Treatment Response in Mood Disorders: A Review. Front Psychiatry 2021;12:565136. google scholar
- 72. Sirin NG, Kurt E, Ulasoglu-Yildiz C, Kicik A, Bayram A, Karaaslan Z, et al. Functional connectivity analysis of patients with temporal lobe epilepsy displaying different ictal propagation patterns. Epileptic Disord. 2020; 22(5):623-632. google scholar
- 73. Ay U, Gürvit İH. Alterations in large-scale intrinsic connectivity networks in the Parkinson’s disease-associated cognitive impairment continuum: a systematic review. Archives of Neuropsychiatry 2022;59(Suppl 1), 57-66. google scholar
- 74. Ur Özçelik E, Kurt E, Şirin NG, Eryürek K, Ulaşoğlu Yıldız Ç, Harı E, et al, Functional connectivity dis-turbances of ascending reticular activating system and posterior thalamus in juvenile myoclonic epilepsy in relation with photosensitivity: A resting-state fMRI study. Epilepsy Res 2021;171:106569. google scholar
- 75. Sezgin M, Kicik A, Bilgic B, Kurt E, Bayram A, Hanagası H, et al. Functional Connectivity Analysis in Heterozygous Glucocerebrosidase Mutation Carriers. J Parkinsons Dis. 2021;11(2):559-568. google scholar
- 76. Ergül C, Ulasoglu-Yildiz C, Kurt E, Koyuncu A, Kicik A, Demiralp T, et al. Intrinsic functional connec-tivity in social anxiety disorder with and without comorbid attention deficit hyperactivity disorder. Brain Res. 2019;1722, 146364. google scholar
- 77. Kınay D, Ulasoglu-Yildiz C, Kurt E, Eryurek K, Demiralp T, Coşkun M. Resting-state functional connec-tivity alterations in drug-naive adolescents with obsessive-compulsive disorder. Psychiatry Clin. Psychop-harmacol 2021;31:40-47. google scholar
- 78. Bulbul O, Kurt E, Ulasoglu-Yildiz C, Demiralp T, Ucok A. Altered Resting State Functional Connectivity and Its Correlation with Cognitive Functions at Ultra High Risk for Psychosis. Psychiatry Res Neuroima-ging 2022; 321:111444. google scholar
- 79. Kurt E. Investigation of brain’s resting state networks during sensory, motor and cognitive activation states. Istanbul University, Institute of Health Science, Department of Neuroscience. Doctoral Thesis. Istanbul; 2018 google scholar
- 80. Eryurek K, Ulasoglu-Yildiz C, Matur Z, Öge AE, Gürvit H, Demiralp T. Default mode and dorsal attention network involvement in visually guided motor sequence learning. Cortex 2022;146, 89-105. google scholar