CHAPTER


DOI :10.26650/B/T3.2024.40.031   IUP :10.26650/B/T3.2024.40.031    Full Text (PDF)

Comparison of Artificial Intelligence and Human Factor in Periodontal Disease Diagnosis

Buse Başak Feyizoğlu

Periodontal disease is a chronic inflammatory condition that leads to the destruction of the periodontal tissues. It has a high prevalence rate and if left untreated, it will result in tooth loss. Artificial intelligence (AI) is a technology that utilizes machines to simulate human intelligence. It has subsets such as machine learning, neural networks and deep learning. Convolutional neural network (CNN), a specifically designed deep learning algorithm for image and video processing, primarily used in diagnostics. The purpose of this chapter is to explore and compare the roles of artificial intelligence and human expertise in the diagnosis of periodontal disease. Periodontal disease diagnosis can be made successfully after a thorough evaluation and strategic planning. Careful analysis of patient history, clinical signs and symptoms and physical assessment are essential for the process. AI technologies, especially CNN-based methods show reliable and accurate results in detecting periodontal bone loss, assessing attachment levels, and recognizing subtle gingival changes in the way of diagnosis. The developed systems are fast, cost-effective and enable nonspecialists to obtain expert 2. level information. Nevertheless they are not yet capable of making an accurate diagnosis alone. They serve as a valuable second opinion, help dental professionals dealing with huge data and reduce human errors. Collaboration between healthcare professionals and AI technologies will most certainly result in best potential outcomes. As technology advances, we can expect more innovative applications of AI in dental care that will improve patient outcomes while reducing workload and increasing efficiency.


DOI :10.26650/B/T3.2024.40.031   IUP :10.26650/B/T3.2024.40.031    Full Text (PDF)

Peri̇odontal Hastalık Tanısında Yapay Zekâ Ve İnsan Faktörünün Karşılaştırılması

Buse Başak Feyizoğlu

Periodontal hastalık, periodontal dokuların yıkımına yol açan kronik inflamatuar bir durumdur. Yüksek prevalans oranına sahiptir ve tedavi edilmezse diş kaybına neden olabilir. Yapay zekâ (YZ), makineleri insan zekâsını taklit etmek için kullanılan bir teknolojidir. Makine öğrenimi, sinir ağları ve derin öğrenme gibi alt dalları bulunmaktadır. Evrişimsel sinir ağları (CNN - convolutional neural network), özellikle görüntü ve video işleme için tasarlanmış bir derin öğrenme algoritması olup genellikle teşhis amaçlı kullanılmaktadır. Bu bölümün amacı, yapay zekâ ve insan faktörünün periodontal hastalığın teşhisindeki rollerini açıklamak ve karşılaştırmaktır. Periodontal hastalık teşhisinde başarı için, detaylı bir değerlendirme ve stratejik planlama çok önemlidir. Hasta anamnezinin, klinik belirtilerin, semptomların ve fiziksel değerlendirmenin dikkatli bir analizi bu süreç için esastır. Özellikle CNN tabanlı yöntemler, periodontal kemik kaybını tespit etme, ataşman seviyelerini değerlendirme ve dişetindeki değişiklikleri tanıma konusunda güvenilir ve doğru sonuçlar vermektedir. Geliştirilen sistemler uzman olmayanların uzmanlık düzeyinde bilgi edinmelerine olanak tanırken, aynı zamanda hızlıdır ve düşük maliyetlidir. Ancak bu sistemlerin henüz tek başına doğru teşhis yapma yetisine sahip olmadığı düşüncesi hakimdir. Hekimlere ikinci bir görüş olarak hizmet vermekte, büyük veriler ile çalışan hekimlere destek olmakta, insan kaynaklı hataların azalmasında rol oynamaktadır. Sağlık profesyonelleri ile YZ teknolojileri arasındaki işbirliğinin en iyi muhtemel sonuçları ortaya çıkaracağı konusunda fikir birliği mevcuttur. Teknolojik ilerlemelerle, YZ uygulamalarının diş hekimliği alanında daha kapsamlı ve sık yer alması öngörülmekte ve bu sayede hastalıkların teşhis ve tedavilerinde başarının artması, iş yükünün azalması beklenmektedir.



References

  • Alalharith, D. M., Alharthi, H. M., Alghamdi, W. M., Alsenbel, Y. M., Aslam, N., Khan, I. U., Shahin, S. Y., Dianiskova, S., Alhareky, M. S., & Barouch, K. K. (2020). A deep learning-based approach for the detection of early signs of gingivitis in orthodontic patients using faster region-based convolutional neural networks. International Journal of Environmental Research and Public Health, 17(22), 1-10. https://doi.org/10.3390/ ijerph17228447 google scholar
  • Alotaibi, G., Awawdeh, M., Farook, F. F., Aljohani, M., Aldhafiri, R. M., & Aldhoayan, M. (2022). Artificial intelligence (AI) diagnostic tools: utilizing a convolutional neural network (CNN) to assess periodontal bone level radiographically—a retrospective study. BMC Oral Health, 22(1), 1-7. https://doi.org/10.1186/ s12903-022-02436-3 google scholar
  • Balaei, A., De Chazal, P., Eberhard, J., Domnisch, H., Spahr, A., & Ruiz, K. (2017). Automatic detecti-on of periodontitis using intra-oral images. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2017, 3906-3909. https://doi.org/10.1109/ EMBC.2017.8037710 google scholar
  • Bartold, P. M., & Narayanan, A. S. (2006). Molecular and cell biology of healthy and diseased periodontal tis-sues. Periodontology 2000, 40(1), 29-49. https://doi.org/10.1111/j.1600-0757.2005.00140.x google scholar
  • Billings, M., Holtfreter, B., Papapanou, P. N., Mitnik, G. L., Kocher, T., & Dye, B. A. (2018). Age-Dependent Distribution of Periodontitis in Two Countries: Findings from NHANES 2009-2014 and SHIP-TREND 2008-2012. Journal of Periodontology, 89(Suppl 1), 140-158. google scholar
  • Bini, S. A. (2018). Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? Journal of Arthroplasty, 33(8), 2358-2361. https://doi.org/10.1016/j.arth.2018.02.067 google scholar
  • Cekici, A., Kantarci, A., Hasturk, H., & Van Dyke, T. E. (2014). Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000, 64(1), 57-80. google scholar
  • Chang, H. J., Lee, S. J., Yong, T. H., Shin, N. Y., Jang, B. G., Kim, J. E., Huh, K. H., Lee, S. S., Heo, M. S., Choi, S. C., Kim, T. Il, & Yi, W. J. (2020). Deep Learning Hybrid Method to Automatically Diagnose Peri-odontal Bone Loss and Stage Periodontitis. Scientific Reports, 10(1), 1-8. https://doi.org/10.1038/s41598-020-64509-z google scholar
  • Chapple, I. L. C., Mealey, B. L., Van Dyke, T. E., Bartold, P. M., Dommisch, H., Eickholz, P., Geisinger, M. L., Genco, R. J., Glogauer, M., Goldstein, M., Griffin, T. J., Holmstrup, P., Johnson, G. K., Kapila, Y., Lang, N. P., Meyle, J., Murakami, S., Plemons, J., Romito, G. A., ... Yoshie, H. (2018). Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Periodontology, 89, S74-S84. https://doi.org/10.1002/JPER.17-0719 google scholar
  • Chau, R. C. W., Li, G. H., Tew, I. M., Thu, K. M., McGrath, C., Lo, W. L., Ling, W. K., Hsung, R. T. C., & Lam, W. Y. H. (2023). Accuracy of Artificial Intelligence-Based Photographic Detection of Gingivitis. Internati-onalDental Journal, 73(5), 724-730. https://doi.org/10.1016Zj.identj.2023.03.007 google scholar
  • Cholan, P., Ramachandran, L., Umesh, S. G., P, S., & Tadepalli, A. (2023). The Impetus of Artificial Intelligence on Periodontal Diagnosis: A Brief Synopsis. Cureus, 15(8), e43583. https://doi.org/10.7759/cureus.43583 google scholar
  • Corbet, E. F., Ho, D. K. L., & Lai, S. M. L. (2009). Radiographs in periodontal disease diagnosis and manage-ment. Australian Dental Journal, 54, 27-43. https://doi.org/10.1111/j.1834-7819.2009.01141.x google scholar
  • Danks, R. P., Bano, S., Orishko, A., Tan, H. J., Moreno Sancho, F., D’Aiuto, F., & Stoyanov, D. (2021). Automa-ting Periodontal bone loss measurement via dental landmark localisation. International Journal of Computer Assisted Radiology and Surgery, 16(7), 1189-1199. https://doi.org/10.1007/s11548-021-02431-z google scholar
  • Darveau, R. P. (2010). Periodontitis: A polymicrobial disruption of host homeostasis. Nature Reviews Microbi-ology, 8(7), 481-490. https://doi.org/10.1038/nrmicro2337 google scholar
  • Di Benedetto, A., Gigante, I., Colucci, S., & Grano, M. (2013). Periodontal disease: Linking the primary inflam-mation to bone loss. Clinical and Developmental Immunology, 2013. https://doi.org/10.1155/2013/503754 google scholar
  • Eke, P. I., Dye, B. A., Wei, L., Thornton-Evans, G. O., & Genco, R. J. (2012). Prevalence of periodontitis in adults in the united states: 2009 and 2010. Journal of Dental Research, 91(10), 914-920. https://doi. org/10.1177/0022034512457373 google scholar
  • Eke, Paul I., Dye, B. A., Wei, L., Slade, G. D., Thornton-Evans, Gina O. Borgnakke, W. S., Taylor, G. W., Page, R. C., Beck, J. D., & Genco, R. J. (2015). Update on Prevelence of Periodontitis in Adults in the Unite States. Journal of Peridontology, 86(5), 611-622. https://doi.org/10.1902/jop.2015.140520.Update google scholar
  • Eke, Paul I., Thornton-Evans, G. O., Wei, L., Borgnakke, W. S., Dye, B. A., & Genco, R. J. (2018). Periodonti-tis in US Adults: National Health and Nutrition Examination Survey 2009-2014. Journal of the American Dental Association, 149(7), 576-588.e6. https://doi.org/10.1016/j.adaj.2018.04.023 google scholar
  • Elashiry, M., Meghil, M. M., Arce, R. M., & Cutler, C. W. (2019). From manual periodontal probing to digital 3-D imaging to endoscopic capillaroscopy: Recent advances in periodontal disease diagnosis. Journal of Periodontal Research, 54(1), 1-9. https://doi.org/10.1111/jre.12585 google scholar
  • Han, J., Menicanin, D., Gronthos, S., & Bartold, P. M. (2014). Stem cells, tissue engineering and periodontal regeneration. Australian Dental Journal, 59(Suppl. 1), 117-130. https://doi.org/10.1111/adj.12100 google scholar
  • Highfield, J. (2009). Diagnosis and classification of periodontal disease. Australian Dental Journal, 54, S11-S26. https://doi.org/10.1111/j.1834-7819.2009.01140.x google scholar
  • Javaid, M., Haleem, A., Pratap Singh, R., Suman, R., & Rab, S. (2022). Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks, 3, 58-73. https:// doi.org/10.1016/j.ijin.2022.05.002 google scholar
  • Kassebaum, N. J., Bernabe, E., Dahiya, M., Bhandari, B., Murray, C. J. L., & Marcenes, W. (2014). Global burden of severe periodontitis in 1990-2010: A systematic review and meta-regression. Journal of Dental Research, 93(11), 1045-1053. https://doi.org/10.1177/0022034514552491 google scholar
  • Khanagar, S. B., Al-ehaideb, A., Maganur, P. C., Vishwanathaiah, S., Patil, S., Baeshen, H. A., Sarode, S. C., & Bhandi, S. (2021). Developments, application, and performance of artificial intelligence in dentistry - A systematic review. Journal of Dental Sciences, 16(1), 508-522. https://doi.org/10.1016/j.jds.2020.06.019 google scholar
  • Kim, J., Lee, H. S., Song, I. S., & Jung, K. H. (2019). DeNTNet: Deep Neural Transfer Network for the detec-tion of periodontal bone loss using panoramic dental radiographs. Scientific Reports, 9(1), 1-9. https://doi. org/10.1038/s41598-019-53758-2 google scholar
  • Krois, J., Ekert, T., Meinhold, L., Golla, T., Kharbot, B., Wittemeier, A., Dörfer, C., & Schwendicke, F. (2019). Deep Learning for the Radiographic Detection of Periodontal Bone Loss. Scientific Reports, 9(1), 1-6. https://doi.org/10.1038/s41598-019-44839-3 google scholar
  • Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/ nature14539 google scholar
  • Lee, C., Kabir, T., Nelson, J., Sheng, S., Meng, H., Dyke, T. E. Van, Walji, M. F., Jiang, X., & Shams, S. (2022). Use of the deep learning approach to measure alveolar bone level. Journal of Clinical Periodontology, 49(3), 260-269. https://doi.org/10.1111/jcpe.13574.Use google scholar
  • Lee, J. H., Kim, D. H., Jeong, S. N., & Choi, S. H. (2018). Diagnosis and prediction of periodontally compromi-sed teeth using a deep learning-based convolutional neural network algorithm. Journal of Periodontal and Implant Science, 48(2), 114-123. https://doi.org/10.5051/jpis.2018.48.2.114 google scholar
  • Li, H., Zhou, J., Zhou, Y., Chen, Q., She, Y., Gao, F., Xu, Y., Chen, J., & Gao, X. (2021). An Interpretable Com-puter-Aided Diagnosis Method for Periodontitis From Panoramic Radiographs. Frontiers in Physiology, 12(June), 1-9. https://doi.org/10.3389/fphys.2021.655556 google scholar
  • Loesche, W. J., & Grossman, N. S. (2001). Periodontal disease as a specific, albeit chronic, infection: Diagnosis and treatment. Clinical Microbiology Reviews, 14(4), 727–752. https://doi.org/10.1128/CMR.14.4.727- 752.2001 google scholar
  • Loos, B. G., & Van Dyke, T. E. (2020). The role of inflammation and genetics in periodontal disease. Periodon-tology 2000, 83(1), 26-39. https://doi.org/10.1111/prd.12297 google scholar
  • Murakami, S., Mealey, B. L., Mariotti, A., & Chapple, I. L. C. (2018). Dental plaque-induced gingival conditi-ons. Journal of Clinical Periodontology, 45(Suppl 20), 17-27. https://doi.org/10.1111/jcpe.12937 google scholar
  • Naylor, C. D. (2018). On the prospects for a (Deep) learning health care system. JAMA - Journal of the American Medical Association, 320(11), 1099-1100. https://doi.org/10.1001/jama.2018.11103 google scholar
  • Papapanou, P. N., Sanz, M., Buduneli, N., Dietrich, T., Feres, M., Fine, D. H., Flemmig, T. F., Garcia, R., Gian-nobile, W. V., Graziani, F., Greenwell, H., Herrera, D., Kao, R. T., Kebschull, M., Kinane, D. F., Kirkwood, K. L., Kocher, T., Kornman, K. S., Kumar, P. S., ... Tonetti, M. S. (2018). Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Periodontology, 89(March), 173-182. https://doi.org/10.1002/JPER.17-0721 google scholar
  • Park, W. J., & Park, J.-B. (2018). History and application of artificial neural networks in dentistry. European Journal of Dentistry, 12, 594-601. https://doi.org/10.4103/ejd.ejd google scholar
  • Patil, S., Albogami, S., Hosmani, J., Mujoo, S., Kamil, M. A., Mansour, M. A., Abdul, H. N., Bhandi, S., & Ahmed, S. S. S. J. (2022). Artificial Intelligence in the Diagnosis of Oral Diseases: Applications and Pitfalls. Diagnostics, 12(5), 1-14. https://doi.org/10.3390/diagnostics12051029 google scholar
  • Poalelungi, D. G., Musat, C. L., Fulga, A., Neagu, M., Neagu, A. I., Piraianu, A. I., & Fulga, I. (2023). Advancing Patient Care: How Artificial Intelligence Is Transforming Healthcare. Journal of Personalized Medicine, 13(8), 1214. https://doi.org/10.3390/jpm13081214 google scholar
  • Ridgeway, E. E. (2000). Periodontal disease: diagnosis and management. Journal of the American Academy of Nurse Practitioners, 12(3), 79-84. https://doi.org/10.1111/j.1745-7599.2000.tb00171.x google scholar
  • Rösing, C. K., Cavagni, J., Malheiros, Z., Stewart, B., & Aranguiz Freyhofer, V. (2020). Periodontal disease and its impact on general health in Latin America. Section IV: Diagnosis. Brazilian Oral Research, 34, 1-6. https://doi.org/10.1590/1807-3107BOR-2020.VOL34.0024 google scholar
  • Scott, J., Biancardi, A. M., Jones, O., & Andrew, D. (2023). Artificial Intelligence in Periodontology: A Scoping Review. Dentistry Journal, 11(2), 43. https://doi.org/10.3390/jcm12062254 google scholar
  • Tonetti, M. S., Jepsen, S., Jin, L., & Otomo-Corgel, J. (2017). Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. Journal of Clinical Periodontology, 44(5), 456-462. https://doi.org/10.1111/jcpe.12732 google scholar
  • Tsoromokos, N., Parinussa, S., Claessen, F., Moin, D. A., & Loos, B. G. (2022). Estimation of Alveolar Bone Loss in Periodontitis Using Machine Learning. International Dental Journal, 72(5), 621-627. https://doi. org/10.1016/j.identj.2022.02.009 google scholar
  • Uzun Saylan, B. C., Baydar, O., Yeşilova, E., Kurt Bayrakdar, S., Bilgir, E., Bayrakdar, İ. Ş., Çelik, Ö., & Orhan, K. (2023). Assessing the Effectiveness of Artificial Intelligence Models for Detecting Alveolar Bone Loss in Periodontal Disease: A Panoramic Radiograph Study. Diagnostics, 13(10). https://doi.org/10.3390/ diagnostics13101800 google scholar
  • White, D. A., Tsakos, G., Pitts, N. B., Fuller, E., Douglas, G. V. A., Murray, J. J., & Steele, J. G. (2012). Adult Dental Health Survey 2009: Common oral health conditions and their impact on the population. British Dental Journal, 213(11), 567-572. https://doi.org/10.1038/sj.bdj.2012.1088 google scholar


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.