Research Article


DOI :10.26650/JARHS2024-1407047   IUP :10.26650/JARHS2024-1407047    Full Text (PDF)

IN VITRO TOXIC EFFECTS OF AZOXYSTROBIN ON HUMAN NEUROBLASTOMA CELL LINE

Ayşenur BilgehanGül Özhan

Objective: Exposure to agricultural chemicals is associated with health issues such as autism, brain aging, and neurodegenerative diseases. Azoxystrobin (AZS), a strobilurin-derived fungicide, is a commonly used chemical. Although studies have demonstrated that AZS induces toxic effects on various tissues, there is a lack of clear understanding of the mechanisms underlying its neurotoxic effects. The mechanisms linking pesticide exposure to these health outcomes might be oxidative stress and apoptosis. Therefore, we conducted this study to investigate oxidative stress and cell death induction in human neuroblastoma SH-SY5Y cells, a widely established in vitro model for neurotoxicity experiments, after exposure to AZS.

Materials and Methods: SH-SY5Y cells were exposed to different concentrations of AZS for 24 h. Cytotoxicity was evaluated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assay, the induction of reactive oxygen species (ROS) was determined using a fluorescent dye, and cell apoptosis was detected using the FITC Annexin V assay.

Results: The half-maximal inhibitory concentration value of AZS was 44.87 μM. The levels of ROS (at least 1.5-fold; p≤0.05) and apoptosis (at least 5-fold; p≤0.05) increased in a dose-dependent manner at AZS exposure concentrations of 6.25-25 μM.

Conclusion: AZS-induced neurotoxic effects may be a consequence of ROS generation and ROS-induced apoptosis. However, the mechanisms underlying AZS-induced neurotoxicity should be evaluated by further studies to gain a deeper understanding of its toxic capacity and conduct evaluations of occupational and environmental risks.

DOI :10.26650/JARHS2024-1407047   IUP :10.26650/JARHS2024-1407047    Full Text (PDF)

AZOXYSTROBİN’İN İNSAN NÖROBLASTOMA HÜCRE HATTI ÜZERİNDEKİ İN VİTRO TOKSİK ETKİLERİ

Ayşenur BilgehanGül Özhan

Amaç: Çalışmalar, tarım ilaçlarına maruziyetin otizm, beyin yaşlanması ve nörodejeneratif hastalıklar gibi sağlık sorunları ile ilişkili olabileceğini bildirmektedir. Yaygın kullanılan tarım ilaçlarından biri de strobilurin türevi bir fungusit olan azoksistrobin (AZS)’dir. Araştırmalar, çeşitli dokularda AZS’nin toksik etkilerini gösterse de nörotoksik etkilerin altında yatan temel mekanizmalar halen tam olarak anlaşılamamıştır. Tarım ilaçlarına maruziyetin sebep olduğu sağlık sorunlarının oksidatif stres ve apoptoz ile ilişkili olabieceği bildirilmektedir. Bu nedenle, nörotoksisite değerlendirmelerinde yaygın kullanılan bir in vitro model olan insan nöroblastoma (SH-SY5Y) hücrelerinde AZS’nin oksidatif hasar oluşturma ve hücre ölümünü indükleme etkisinin değerlendirilmesi amaçlanmıştır.

Gereç ve Yöntem: SH-SY5Y hücreleri 24 saat boyunca AZS’nin farklı konsantrasyonlarına maruz bırakılmıştır. MTT testi ile sitotoksisite değerlendirilirken spesifik floresan boya ile reaktif oksijen türlerinin (ROS) oluşumu ve FITC Annexin V testi ile de hücresel apoptoz seviyeleri incelenmiştir.

Bulgular: AZS’nin IC50 değeri 44.87 μM olarak bulunmuştur. ROS (en az 1,5 kat; p≤0,05) ve apoptoz (en az 5 kat; p≤0,05) seviyeleri 6.25-25 μM AZS maruziyet aralığında doza bağlı artmıştır.

Sonuç: Bulgularımız, AZS’nin neden olduğu nörotoksik etkilerin ROS üretimi ve ROS ile indüklenen apoptozun bir sonucu olabileceğini düşündürmektedir. Ancak, AZS’nin toksik etki potansiyelinin daha iyi anlaşılması, mesleki ve çevresel risk faktörlerinin değerlendirilmesi, AZS kaynaklı nörotoksisiteye neden olan temel mekanizmaların aydınlatılması için ileri araştırmalara ihtiyaç duyulduğu da göz ardı edilmemelidir.


PDF View

References

  • 1. Queiros L, Aguiar N, Pereira P, Gonçalves FJM, Alves A, Pereira JL. Recommended rates of azoxystrobin and tebuconazole seem to be environmentally safe but ineffective against target fungi. Ecotoxicology 2023;32(1):102-13. google scholar
  • 2. Pearson BL, Simon JM, McCoy ES, Salazar G, Fragola G, Zylka MJ. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nat Commun 2016;7(1):1173. google scholar
  • 3. Cao F, Wu P, Huang L, Li H, Qian L, Pang S, et al. Short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish (Danio rerio). Aquat Toxicol 2018;198:129-40. google scholar
  • 4. Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. The strobilurin fungicides. Pest Manag Sci 2002;58(7):649-62. google scholar
  • 5. Kang J, Bishayee K, Huh SO. Azoxystrobin Impairs Neuronal Migration and Induces ROS Dependent Apoptosis in Cortical Neurons. Int J Mol Sci 2021;22(22):12495. google scholar
  • 6. Cao F, Li H, Zhao F, Wu P, Qian L, Huang L, et al. Parental exposure to azoxystrobin causes developmental effects and disrupts gene expression in F1 embryonic zebrafish (Danio rerio). Sci Total Environ 2019;646:595-605. google scholar
  • 7. Cao F, Martyniuk CJ, Wu P, Zhao F, Pang S, Wang C, et al. Long-Term Exposure to Environmental Concentrations of Azoxystrobin Delays Sexual Development and Alters Reproduction in Zebrafish (Danio rerio). Environ Sci Technol 2019;53(3):1672-9. google scholar
  • 8. Nguyen K, Sanchez CL, Brammer-Robbins E, Pena-Delgado C, Kroyter N, El Ahmadie N, et al. Neurotoxicity assessment of QoI strobilurin fungicides azoxystrobin and trifloxystrobin in human SH-SY5Y neuroblastoma cells: Insights from lipidomics and mitochondrial bioenergetics. Neurotoxicology 2022;91:290-304. google scholar
  • 9. Regueiro J, Olgum N, Simal-Gândara J, Sunol C. Toxicity evaluation of new agricultural fungicides in primary cultured cortical neurons. Environ Res 2015;140:37-44. google scholar
  • 10. Olsvik PA, Kroglund F, Finstad B, Kristensen T. Effects of the fungicide azoxystrobin on Atlantic salmon (Salmo salar L.) smolt. Ecotoxicol Environ Saf 2010;73(8):1852-61. google scholar
  • 11. Juraske R, Sanjuân N. Life cycle toxicity assessment of pesticides used in integrated and organic production of oranges in the Comunidad Valenciana, Spain. Chemosphere. 2011;82(7):956-62. google scholar
  • 12. Takahashi S, Shinomiya T, Nagahara Y. Azoxystrobin Induces Apoptosis and Cell Cycle Arrest in Human Leukemia Cells Independent of p53 Expression. Anticancer Res 2022;42(3):1307-12. google scholar
  • 13. Kumar N, Willis A, Satbhai K, Ramalingam L, Schmitt C, Moustaid-Moussa N, et al. Developmental toxicity in embryo-larval zebrafish (Danio rerio) exposed to strobilurin fungicides (azoxystrobin and pyraclostrobin). Chemosphere 2020;241:124980. google scholar
  • 14. Cooper EM, Rushing R, Hoffman K, Phillips AL, Hammel SC, Zylka MJ, et al. Strobilurin fungicides in house dust: is wallboard a source? J Expo Sci Environ Epidemiol 2020;30(2):247-52. google scholar
  • 15. U.S. EPA, Pesticide Product Label, Azoxystrobin Mold-Retardant 2.08 SC. 2004. 2024 March 23. https://www3.epa.gov/pesticides/ chem_search/ppls/000100-01197-20041130.pdf google scholar
  • 16. Carrasco Cabrera L, Medina Pastor P. The 2019 European Union report on pesticide residues in food. EFSA Journal 2021;19(4):89. google scholar
  • 17. Kazar Soydan D, Turgut N, Yalçın M, Turgut C, Karakuş PBK. Evaluation of pesticide residues in fruits and vegetables from the Aegean region of Turkey and assessment of risk to consumers. Environ Sci Pollut Res Int. 2021;28(22):27511-9. google scholar
  • 18. NCB (National Center for Biotechnology) PubChem Compound Summary for CID 3034285, Azoxystrobin. PubChem 2021. 2024 March 23. https://pubchem.ncbi.nlm.nih.gov/compound/ Azoxystrobin. google scholar
  • 19. Crupkin AC, Fulvi AB, Iturburu FG, Medici S, Mendieta J, Panzeri AM, et al. Evaluation of hematological parameters, oxidative stress and DNA damage in the cichlid Australoheros facetus exposed to the fungicide azoxystrobin. Ecotoxicol Environ Saf 2021;207:111286. google scholar
  • 20. Shi XK, Bian XB, Huang T, Wen B, Zhao L, Mu HX, et al. Azoxystrobin Induces Apoptosis of Human Esophageal Squamous Cell Carcinoma KYSE-150 Cells through Triggering of the Mitochondrial Pathway. Front Pharmacol 2017;8:277. google scholar
  • 21. Hu W, Liu CW, Jimenez JA, McCoy ES, Hsiao YC, Lin W, et al. Detection of Azoxystrobin Fungicide and Metabolite Azoxystrobin-Acid in Pregnant Women and Children, Estimation of Daily Intake, and Evaluation of Placental and Lactational Transfer in Mice. Environ Health Perspect 2022;130(2):27013. google scholar
  • 22. Xicoy H, Wieringa B, Martens GJM. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener 2017;12(1):1-11. google scholar
  • 23. Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 2010;594:57-72. google scholar
  • 24. Ruiz-Yance I, Siguas J, Bardales B, Robles-Castaneda I, Cordova K, Ypushima A, et al. Potential Involvement of Oxidative Stress, Apoptosis and Proinflammation in Ipconazole-Induced Cytotoxicity in Human Endothelial-like Cells. Toxics 2023;11(10):839. google scholar
  • 25. Barrios-Arpi L, Arias Y, Lopez-Torres B, Ramos-Gonzalez M, Ticli G, Prosperi E, et al. In Vitro Neurotoxicity of Flumethrin Pyrethroid on SH-SY5Y Neuroblastoma Cells: Apoptosis Associated with Oxidative Stress. Toxics 2022;10(3):131. google scholar
  • 26. Nguyen K, Sanchez CL, Brammer-Robbins E, Pena-Delgado C, Kroyter N, El Ahmadie N, et al. Neurotoxicity assessment of QoI strobilurin fungicides azoxystrobin and trifloxystrobin in human SH-SY5Y neuroblastoma cells: Insights from lipidomics and mitochondrial bioenergetics. Neurotoxicology 2022;91:290-304. google scholar
  • 27. Chen H, Li L, Lu Y, Shen Y, Zhang M, Ge L, et al. Azoxystrobin Reduces Oral Carcinogenesis by Suppressing Mitochondrial Complex III Activity and Inducing Apoptosis. Cancer Manag Res 2020;12:11573-83. google scholar
  • 28. De Souza WR, Vessecchi R, Dorta DJ, Uyemura SA, Curti C, Vargas-Rechia CG. Characterization of Rubus fruticosus mitochondria and salicylic acid inhibition of reactive oxygen species generation at Complex III/Q cycle: potential implications for hypersensitive response in plants. J Bioenerg Biomembr 2011;43(3):237-46. google scholar
  • 29. Wei F, Su T, Wang D, Li H, You J. Transcriptomic analysis reveals common pathways and biomarkers associated with oxidative damage caused by mitochondrial toxicants in Chironomus dilutus. Chemosphere 2020;254:126746. google scholar
  • 30. Finkel T. Signal transduction by mitochondrial oxidants. Journal of Biological Chemistry 2012;287(7):4434-40. google scholar
  • 31. Chen H, Wang J, Zhang C, Ding P, Tian S, Chen J, et al. Sphingosine 1-phosphate receptor, a new therapeutic direction in different diseases. Biomed Pharmacother 2022;153:113341. google scholar
  • 32. Kang J, Bishayee K, Huh SO. Azoxystrobin Impairs Neuronal Migration and Induces ROS Dependent Apoptosis in Cortical Neurons. Int J Mol Sci 2021;22(22):12495. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Bilgehan, A., & Özhan, G. (2024). IN VITRO TOXIC EFFECTS OF AZOXYSTROBIN ON HUMAN NEUROBLASTOMA CELL LINE. Journal of Advanced Research in Health Sciences, 7(3), 214-219. https://doi.org/10.26650/JARHS2024-1407047


AMA

Bilgehan A, Özhan G. IN VITRO TOXIC EFFECTS OF AZOXYSTROBIN ON HUMAN NEUROBLASTOMA CELL LINE. Journal of Advanced Research in Health Sciences. 2024;7(3):214-219. https://doi.org/10.26650/JARHS2024-1407047


ABNT

Bilgehan, A.; Özhan, G. IN VITRO TOXIC EFFECTS OF AZOXYSTROBIN ON HUMAN NEUROBLASTOMA CELL LINE. Journal of Advanced Research in Health Sciences, [Publisher Location], v. 7, n. 3, p. 214-219, 2024.


Chicago: Author-Date Style

Bilgehan, Ayşenur, and Gül Özhan. 2024. “IN VITRO TOXIC EFFECTS OF AZOXYSTROBIN ON HUMAN NEUROBLASTOMA CELL LINE.” Journal of Advanced Research in Health Sciences 7, no. 3: 214-219. https://doi.org/10.26650/JARHS2024-1407047


Chicago: Humanities Style

Bilgehan, Ayşenur, and Gül Özhan. IN VITRO TOXIC EFFECTS OF AZOXYSTROBIN ON HUMAN NEUROBLASTOMA CELL LINE.” Journal of Advanced Research in Health Sciences 7, no. 3 (Dec. 2024): 214-219. https://doi.org/10.26650/JARHS2024-1407047


Harvard: Australian Style

Bilgehan, A & Özhan, G 2024, 'IN VITRO TOXIC EFFECTS OF AZOXYSTROBIN ON HUMAN NEUROBLASTOMA CELL LINE', Journal of Advanced Research in Health Sciences, vol. 7, no. 3, pp. 214-219, viewed 22 Dec. 2024, https://doi.org/10.26650/JARHS2024-1407047


Harvard: Author-Date Style

Bilgehan, A. and Özhan, G. (2024) ‘IN VITRO TOXIC EFFECTS OF AZOXYSTROBIN ON HUMAN NEUROBLASTOMA CELL LINE’, Journal of Advanced Research in Health Sciences, 7(3), pp. 214-219. https://doi.org/10.26650/JARHS2024-1407047 (22 Dec. 2024).


MLA

Bilgehan, Ayşenur, and Gül Özhan. IN VITRO TOXIC EFFECTS OF AZOXYSTROBIN ON HUMAN NEUROBLASTOMA CELL LINE.” Journal of Advanced Research in Health Sciences, vol. 7, no. 3, 2024, pp. 214-219. [Database Container], https://doi.org/10.26650/JARHS2024-1407047


Vancouver

Bilgehan A, Özhan G. IN VITRO TOXIC EFFECTS OF AZOXYSTROBIN ON HUMAN NEUROBLASTOMA CELL LINE. Journal of Advanced Research in Health Sciences [Internet]. 22 Dec. 2024 [cited 22 Dec. 2024];7(3):214-219. Available from: https://doi.org/10.26650/JARHS2024-1407047 doi: 10.26650/JARHS2024-1407047


ISNAD

Bilgehan, Ayşenur - Özhan, Gül. IN VITRO TOXIC EFFECTS OF AZOXYSTROBIN ON HUMAN NEUROBLASTOMA CELL LINE”. Journal of Advanced Research in Health Sciences 7/3 (Dec. 2024): 214-219. https://doi.org/10.26650/JARHS2024-1407047



TIMELINE


Submitted19.12.2023
Accepted15.03.2024
Published Online22.10.2024

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.