Research Article


DOI :10.26650/EurJBiol.2020.0019   IUP :10.26650/EurJBiol.2020.0019    Full Text (PDF)

Somatic Missense Mutations of Histone Variant H3.3 in Central Nervous System Cancers

Burcu Biterge Sut

Objective: Histone variants are important modulators of chromatin functions. Studies have pointed out that epigenetic factors are often dysregulated in carcinogenesis. Although some cancer-associated mutations of the histone variant H3.3 have been identified previously, a complete list of H3.3 mutations and their potential effects is yet to be uncovered. Therefore, this study aims to identify the missense mutations of the histone variant H3.3 in central nervous system (CNS) cancers and to computationally predict their functional consequences on pathogenicity, protein stability and structure. Materials and Methods: A complete set of human H3.3 mutations was acquired from the COSMIC v90 database and missense mutations were selected. The potential effects of these mutations were assessed using PredictSNP2 and FATHMMXF. Structural outcomes were predicted using MUpro and HOPE servers. Results: We identified 45 unique missense H3.3 substitutions in several tissues including CNS. PredictSNP2 and FATHMM-XF predicted 17 and 42 mutations as deleterious respectively, most of which caused decreased protein stability. Amino acid alterations in CNS cancers were predicted to cause alterations of the 3D structure. Conclusion: Histone variants play significant roles in epigenetic regulation and are often mutated in cancers. Our results showed that H3.3 mutations detected in CNS cancers could affect the genomic distribution of post-translational modifications and histone variants, hence dramatically alter the gene expression profile and contribute to carcinogenesis.


PDF View

References

  • 1. Kouzarides T. Chromatin modifications and their function. Cell 2007; 6(4):693–705. google scholar
  • 2. Albig W, Doenecke D. The human histone gene cluster at the D6S105 locus. Hum Genet 1997; 101:284–94. google scholar
  • 3. Yoda K, Ando S, Morishita S, Houmura K, Hashimoto K, Takeyasu K, et al. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci USA 2000; 97:7266–71. google scholar
  • 4. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 1999; 146:905–16. google scholar
  • 5. Thakar A, Gupta P, Ishibashi T, Finn R, Silva-Moreno B, Uchiyama S, et al. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies. Biochemistry 2009; 48(46):10852–7. google scholar
  • 6. Chakravarthy S, Gundimella SK, Caron C, Perche PY, Pehrson JR, Khochbin S, et al. Structural characterization of the histone variant macroH2A. Mol Cell Biol 2005; 25:7616–24. google scholar
  • 7. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131(6):803-20. doi: 10.1007/s00401-016-1545-1. google scholar
  • 8. McNeill KA. Epidemiology of brain tumors. Neurol Clin 2016; 34(4):981-98. http://dx.doi.org/10.1016/j.ncl.2016.06.014. google scholar
  • 9. Ostrom QT, de Blank PM, Kruchko C, Petersen CM, Liao P, Finlay JL et al. Alex’s Lemonade Stand Foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol 2015; 16 (Suppl 10):x1–36. google scholar
  • 10. Ajeawung NF, Wang HY, Gould P, Kamnasaran D. Advances in molecular targets for the treatment of medulloblastomas. Clin Invest Med 2012; 35(5): E246. google scholar
  • 11. Coluccia D, Figuereido C, Isik S, Smith C, Rutka JT. Medulloblastoma: tumor biology and relevance to treatment and prognosis paradigm. Curr Neurol Neurosci Rep 2016; 16(5):43. doi: 10.1007/s11910-016-0644-7. google scholar
  • 12. Waszak SM, Northcott PA, Buchhalter I, Robinson GW, Sutter C, Groebner S, et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol 2018; 19(6):785-98. doi: 10.1016/S1470-2045(18)30242-0. google scholar
  • 13. Park SH, Won J, Kim SI, Lee Y, Park CK, Kim SK et al. Molecular testing of brain tumor. J Pathol Transl Med 2017; 51(3):205–23. doi:10.4132/jptm.2017.03.08. google scholar
  • 14. Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 2015; 129:829–48. google scholar
  • 15. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012; 124(3):439–47. doi:10.1007/s00401-012-0998-0. google scholar
  • 16. Wan YCE, Liu J, Chan KM. Histone H3 mutations in cancer. Curr Pharmacol Rep 2018; 4(4):292-300. doi: 10.1007/s40495-018-0141-6. google scholar
  • 17. Weinberg DN, Allis CD, Lu C. Oncogenic mechanisms of histone H3 mutations. Cold Spring Harb Perspect Med 2017; 3:7(1). pii: a026443. doi: 10.1101/cshperspect.a026443. google scholar
  • 18. Bendl J, Musil M, Štourač J, Zendulka J, Damborský J, Brezovský J. PredictSNP2: a unified platform for accurately evaluating SNP effects by exploiting the different characteristics of variants in distinct genomic regions. PLoS Comput Biol 2016;12(5): e1004962. doi: 10.1371/journal.pcbi.1004962. google scholar
  • 19. Rogers MF, Shihab HA, Mort M, Cooper DN, Gaunt TR, Campbell C. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics 2018; 34(3):511-3. doi: 10.1093/bioinformatics/btx536. google scholar
  • 20. Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 2006; 62(4):1125-32. google scholar
  • 21. Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics 2010; 11:548. doi: 10.1186/1471-2105-11-548. google scholar
  • 22. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539. doi: 10.1038/msb.2011.75. google scholar
  • 23. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389(6648):251-60. doi: 10.1038/38444. google scholar
  • 24. Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, Giglione C, et al. The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 2006; 5(12):2336-49. google scholar
  • 25. Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, et al. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 2006; 281(1):559–68. google scholar
  • 26. Lan F, Shi Y. Histone H3.3 and cancer: a potential reader connection. Proc Natl Acad Sci USA 2015; 112(22):6814-9. doi: 10.1073/pnas.1418996111. google scholar
  • 27. Chen P, Zhao J, Wang Y, Wang M, Long H, Liang D, et al. H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes Dev 2013; 27(19):2109–24. google scholar
  • 28. Delbarre E, Jacobsen BM, Reiner AH, Sørensen AL, Küntziger T, Collas P. Chromatin environment of histone variant H3.3 revealed by quantitative imaging and genome-scale chromatin and DNA immunoprecipitation. Mol Biol Cell 2010; 21(11):1872-84. doi: 10.1091/mbc.E09-09-0839. google scholar
  • 29. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150(1):12-27. doi: 10.1016/j.cell.2012.06.013. google scholar
  • 30. Suvà ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science 2013; 339(6127):1567-70. doi: 10.1126/science.1230184. google scholar
  • 31. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012;22(4):425-37. doi: 10.1016/j.ccr.2012.08.024. google scholar
  • 32. Kallappagoudar S, Yadav RK, Lowe BR, Partridge JF. Histone H3 mutations--a special role for H3.3 in tumorigenesis? Chromosoma 2015; 124(2):177-89. doi: 10.1007/s00412-015-0510-4. google scholar
  • 33. Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 2013; 45(12):1479-82. doi: 10.1038/ng.2814. google scholar
  • 34. Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 2004;14(2):155-64. google scholar
  • 35. Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 2012; 48(4):491-507. doi: 10.1016/j.molcel.2012.11.006. google scholar
  • 36. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DT, Kool M et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 2013; 24(5):660-72. doi: 10.1016/j.ccr.2013.10.006. google scholar
  • 37. Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz Het al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 2007; 449:933–7. google scholar
  • 38. Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 2004; 24:9630–45. google scholar
  • 39. Hyllus D, Stein C, Schnabel K, Schiltz E, Imhof A, Dou Y, et al. PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev 2007; 21:3369–80. google scholar
  • 40. Wang L, Pal S, Sif S. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol 2008; 28:6262–77. google scholar
  • 41. Arents G, Moudrianakis EN. The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci USA 1995; 92(24):11170-4. doi: 10.1073/pnas.92.24.11170. google scholar
  • 42. Iwasaki S, Iwasaki W, Takahashi M, Sakamoto A, Watanabe C, Shichino Y, et al. The translation inhibitor rocaglamide targets a bimolecular cavity between eIF4A and polypurine RNA. Mol Cell 2019; 73(4):738-748.e9. doi: 10.1016/j.molcel.2018.11.026. google scholar
  • 43. Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010; 140(5):678-91. doi: 10.1016/j.cell.2010.01.003. google scholar
  • 44. Yuen BT, Knoepfler PS. Histone H3.3 mutations: a variant path to cancer. Cancer Cell 2013; 24(5):567-74. doi: 10.1016/j.ccr.2013.09.015. google scholar
  • 45. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012; 482(7384):226-31. doi: 10.1038/nature10833. google scholar
  • 46. Lim J, Park JH, Baude A, Fellenberg J, Zustin J, Haller F, et al. Transcriptome and protein interaction profiling in cancer cells with mutations in histone H3.3. Sci Data 2018; 5:180283. doi: 10.1038/sdata.2018.283. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Biterge Sut, B. (2020). Somatic Missense Mutations of Histone Variant H3.3 in Central Nervous System Cancers. European Journal of Biology, 79(2), 75-82. https://doi.org/10.26650/EurJBiol.2020.0019


AMA

Biterge Sut B. Somatic Missense Mutations of Histone Variant H3.3 in Central Nervous System Cancers. European Journal of Biology. 2020;79(2):75-82. https://doi.org/10.26650/EurJBiol.2020.0019


ABNT

Biterge Sut, B. Somatic Missense Mutations of Histone Variant H3.3 in Central Nervous System Cancers. European Journal of Biology, [Publisher Location], v. 79, n. 2, p. 75-82, 2020.


Chicago: Author-Date Style

Biterge Sut, Burcu,. 2020. “Somatic Missense Mutations of Histone Variant H3.3 in Central Nervous System Cancers.” European Journal of Biology 79, no. 2: 75-82. https://doi.org/10.26650/EurJBiol.2020.0019


Chicago: Humanities Style

Biterge Sut, Burcu,. Somatic Missense Mutations of Histone Variant H3.3 in Central Nervous System Cancers.” European Journal of Biology 79, no. 2 (Apr. 2024): 75-82. https://doi.org/10.26650/EurJBiol.2020.0019


Harvard: Australian Style

Biterge Sut, B 2020, 'Somatic Missense Mutations of Histone Variant H3.3 in Central Nervous System Cancers', European Journal of Biology, vol. 79, no. 2, pp. 75-82, viewed 26 Apr. 2024, https://doi.org/10.26650/EurJBiol.2020.0019


Harvard: Author-Date Style

Biterge Sut, B. (2020) ‘Somatic Missense Mutations of Histone Variant H3.3 in Central Nervous System Cancers’, European Journal of Biology, 79(2), pp. 75-82. https://doi.org/10.26650/EurJBiol.2020.0019 (26 Apr. 2024).


MLA

Biterge Sut, Burcu,. Somatic Missense Mutations of Histone Variant H3.3 in Central Nervous System Cancers.” European Journal of Biology, vol. 79, no. 2, 2020, pp. 75-82. [Database Container], https://doi.org/10.26650/EurJBiol.2020.0019


Vancouver

Biterge Sut B. Somatic Missense Mutations of Histone Variant H3.3 in Central Nervous System Cancers. European Journal of Biology [Internet]. 26 Apr. 2024 [cited 26 Apr. 2024];79(2):75-82. Available from: https://doi.org/10.26650/EurJBiol.2020.0019 doi: 10.26650/EurJBiol.2020.0019


ISNAD

Biterge Sut, Burcu. Somatic Missense Mutations of Histone Variant H3.3 in Central Nervous System Cancers”. European Journal of Biology 79/2 (Apr. 2024): 75-82. https://doi.org/10.26650/EurJBiol.2020.0019



TIMELINE


Submitted30.04.2020
Accepted18.06.2020
Published Online23.07.2020

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.