Chronic Lymphocytic Leukemia Cytokine Content: Relationship with Zap70 Expression
Nilgün Işıksaçan, Murat Koşer, Suzan Çınar, Esin Çetin Aktaş, Günnur DenizT cell activation requires many intracellular and extracellular processes. One of them is intracellular pathways, in which protein-tyrosine kinases play a role. T-cell antigen receptor (TCR) activation leads to tyrosine phosphorylation of many cellular proteins including Zeta (𝜁 )-chain associated protein kinase with a molecular weight of 70 kDa (ZAP-70), which co-precipitates with zeta upon TCR stimulation. Activated ZAP70 regulates immune system cell motility, adhesion and cytokine expression, including gamma delta T, memory CD8+ T, natural killer (NK), mucosal associated invariant T (MAIT), naive CD8+ T, regulatory T, memory CD4+ T, and naive CD4+ T cells. ZAP70 circuitously participates in B cell development and activation. ZAP70 is identified as a biological marker for chronic lymphocytic leukemia (CLL), which independently of its kinase activity, enhances B cell receptor signaling of CLL cells. It also enhances migration to chemokines and the response to survival stimuli from the microenvironment. The cytokines secreted in the CLL cells, and the cytokine reserve of the T cells, including interleukin (IL)-2, IL-4, IL-6, IL-9, IL-10, IL-15, IL-21, IL-1 beta, tumor growth factor beta (TGF-beta), tumor necrosis factor alpha (TNF-alpha), etc, affect the development and life span of the CLL cells.
Referanslar
- 1. Brown RJ, Freedman SA, Authors, Lister A, Section Editor, G Rosmarin GA, Deputy Editor. Overview of the pathobiology of the non-Hodgkin lymphomas; 2023. google scholar
- 2. Knowles MD, editor. Neoplastic hematopathology. 2nd ed, classification of non hodgkin’s lymphomas, Lippincott Williams & Wilkins; 2001. p. 691-753. google scholar
- 3. Orchard JA, Ibbotson RE, Davis Z, Wiestner A, Rosenwald A, Thomas PW, et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet. 2004;363(9403):105-11. google scholar
- 4. Durig J, Nückel H, Cremer M, Führer A, Halfmeyer K, Fandrey J, et al. ZAP-70 expression is a prognostic factor in chronic lymphocytic leukemia. Leukemia. 2003;17(12):2426-34. google scholar
- 5. Montserrat E. Classical and new prognostic factors in chronic lymphocytic leukemia: where to now? Hematol J. 2002;3(1):7-9. google scholar
- 6. Condoluci A, Terzi di Bergamo L, Langerbeins P, Hoechstetter MA, Herling CD, De Paoli L, et al. International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia. Blood. 2020;135(21):1859-69. google scholar
- 7. Hallek, M, Al-Sawaf, O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am J Hematol. 2021;96(12):1679-705. google scholar
- 8. Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E, Bhagat G, et al. The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36(7):1720-48. google scholar
- 9. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848-54. google scholar
- 10. Maloum K, Davi F, Merle-Beral H, Pritsch O, Magnac C, Vuillier F, et al. Expression of unmutated VH genes is a detrimental prognostic factor in chronic lymphocytic leukemia. Blood. 2000;96(1):377-9. google scholar
- 11. Saito T, Matsuda Y, Ito H, Fusaki N, Hori T, Yamamoto T. Localization of Zap70, the gene for a T cell-specific protein tyrosine kinase, to mouse and rat chromosomes by fluorescence in situ hybridization and molecular genetic linkage analyses. Mamm Genome. 1997;(1):45-6. google scholar
- 12. Abbas AK, Lichtman AH, editors. Cellular and moleculer immunology. Lymphocyte maturation and expression of antigen receptor Genes; 2000. p. 175-181. google scholar
- 13. Shah NH, Wang Q, Yan Q, Karandur D, Kadlecek TA, Fallahee IR, et al. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. Elife. 2016;5:e20105. google scholar
- 14. Bottini N, Stefanini L, Williams S, Alonso A, Jascur T, Abraham RT, et al. Activation of ZAP-70 through specific dephosphorylation at the inhibitory Tyr-292 by the low molecular weight phosphotyrosine phosphatase (LMPTP). J Biol Chem. 2002;277(27):24220-4. google scholar
- 15. Saka B, Aktan M, Sami U, Oner D, Sanem O, Dincol G. Prognostic importance of soluble CD23 in B-cell chronic lymphocytic leukemia. Clin Lab Haematol. 2006;28(1):30-5. google scholar
- 16. Chan AC, Iwashima M, Turck CW, Weiss A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell. 1992;71(4):649-62. google scholar
- 17. Pede V, Rombout A, Verhasselt B, Philipp J. The Biological Relevance of ZAP-70 in ÇLL. In: Oppezzo P, Çhronic Lymphocytic Leukemia. InTech 2012 p.135-151. google scholar
- 18. Çorcoran M, Parker A, Orchard J, Davis Z, Wirtz M, Schmitz OJ, et al. ZAP-70 methylation status is associated with ZAP-70 expression status in chronic lymphocytic leukemia. Haematologica. 2005;90(8):1078-88. google scholar
- 19. Grywalska E, Zaborek M, Lyczba J, Hrynkiewicz R, Bebnowska D, Becht R, et al. Çhronic lymphocytic leukemia-induced humoral immunosuppression: a systematic review. Çells. 2020;9(11):2398. google scholar
- 20. Çhen J, Sathiaseelan V, Moore A, Tan S, Çhilamakuri ÇSR, Roamio Franklin VN, et al. ZAP-70 constitutively regulates gene expression and protein synthesis in chronic lymphocytic leukemia. Blood. 2021;137(26):3629-40. google scholar
- 21. Çhen L, Huynh L, Apgar J, Tang L, Rassenti L, Weiss A, et al. ZAP-70 enhances IgM signaling independent of its kinase activity in chronic lymphocytic leukemia. Blood. 2008;111(5):2685-92. google scholar
- 22. Burger JA, Quiroga MP, Hartmann E, Bürkle A, Wierda WG, MJ, et al. High-level expression of the T-cell chemokines ÇÇL3 and ÇÇL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BÇR stimulation. Blood. 2009:113(13):3050-58. google scholar
- 23. Khaliq J, Samad S, Siddique S, Imam M, Shamsi TS. Frequency of Zap-70 and ÇD38 in newly diagnosed cases of B-cell chronic lymphocytic leukemia. Nat J Health Sci. 2020;4(2):52-5. google scholar
- 24. Çhen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A, et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2002;100(13):4609-14. google scholar
- 25. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood. 2003;101(12):4944-51. google scholar
- 26. Çrespo M, Villamor N, Gine E, Muntanola A, Çolomer D, Marafioti T, et al. ZAP-70 expression in normal pro/pre B cells, mature B cells, and in B-cell acute lymphoblastic leukemia. Çlin Çancer Res. 2006;12(3 Pt 1):726-34. google scholar
- 27. Wandroo F, Bell A, Darbyshire P, Pratt G, Stankovic T, Gordon J, et al. ZAP-70 is highly expressed in most cases of childhood pre-B cell acute lymphoblastic leukemia. IntJ Lab Hematol. 2008;30(2):149-57. google scholar
- 28. Lanham S, Hamblin T, Oscier D, Ibbotson R, Stevenson F, Packham G. Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia. Blood. 2003;101(3):1087-93. google scholar
- 29. Claus R, Lucas DM, Ruppert AS, Williams KE, Weng D, Patterson K, et al. Validation of ZAP-70 methylation and its relative significance in predicting outcome in chronic lymphocytic leukemia. Blood. 2014;124(1):42-8. google scholar
- 30. Claus R, Lucas DM, Stilgenbauer S, Ruppert AS, Yu L, Zucknick M, et al. Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J Clin Oncol. 2012;30(20):2483-91. google scholar
- 31. Van Bockstaele F, Verhasselt B, Philippe J. Prognostic markers in chronic lymphocytic leukemia: a comprehensive review. Blood Rev. 2009;23(1):25-47. google scholar
- 32. Bosch F, Muntanola A, Gine E, Carrio A, Villamor N, Moreno C, et al. Clinical implications of ZAP-70 expressionin chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2006;70(4):214-7. google scholar
- 33. Scielzo C, Camporeale A, Geuna M, Alessio M, Poggi A, Zocchi MR, et al. ZAP-70 is expressed by normal and malignant human B-cell subsets of different maturational stage. Leukemia. 2006;20(4):689-95. google scholar
- 34. Bekeredjian-Ding I, Doster A, Schiller M, Heyder P, Lorenz HM, Schraven B, et al. TLR9-activating DNA up-regulates ZAP70 via sustained PKB induction in IgM+ B cells. J Immunol. 2008;181(12):8267-77. google scholar
- 35. Wagner M, Oelsner M, Moore A, Götte F, Kuhn PH, Haferlach T, et al. Integration of innate into adaptive immune responses in ZAP-70-positive chronic lymphocytic leukemia. Blood. 2016;127(4):436-48. google scholar
- 36. Schweighoffer E, Vanes L, Mathiot A, Nakamura T, Tybulewicz VL. Unexpected requirement for ZAP-70 in pre-B cell development and allelic exclusion. Immunity. 2003;18(4):523-33. google scholar
- 37. Fallah-Arani F, Schweighoffer E, Vanes L, Tybulewicz VL. Redundant role for Zap70 in B cell development and activation. Eur J Immunol. 2008;38(6):1721-33. google scholar
- 38. Nolz JC, Tschumper RC, Pittner BT, Darce JR, Kay NE, Jelinek DF. ZAP-70 is expressed by a subset of normal human B-lymphocytes displaying an activated phenotype. Leukemia. 2005;19(6):1018-24. google scholar
- 39. Cruse MJ, Lewis, ER, editors. Illustrated Dictionary of Immunology 3rd edition; 2009. google scholar
- 40. Kouzegaran S, Siroosbakht S, Farsad BF, Rezakhaniha B, Dormanesh B, Behnod V, et al. Elevated IL-17A and IL-22 regulate expression of inducible CD38 and Zap-70 in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2018;94(1):143-7. google scholar
- 41. Hus I, Bojarska-Junak A, Chocholska S, Tomczak W, Wos J, Dmoszynska A, et al. Th17/IL-17A might play a protective role in chronic lymphocytic leukemia immunity. PLoS One. 2013;8(11):e78091. google scholar
- 42. Jain P, Javdan M, Feger FK, Chiu PY, Sison C, Damle RN, et al. Th17 and non-Th17 interleukin-17-expressing cells in chronic lymphocytic leukemia: delineation, distribution, and clinical relevance. Haematologica. 2012;97(4):599-607. google scholar
- 43. Jadidi-Niaragh F, Ghalamfarsa G, Memarian A, Asgarian-Omran H, Razavi SM, Sarrafnejad A, et al. Downregulation of IL-17-producing T cells is associated with regulatory T cell expansion and disease progression in chronic lymphocytic leukemia. Tumour Biol. 2013;34(2):929-40. google scholar
- 44. Pang N, Zhang R, Li J, Zhang Z, Yuan H, Chen G, et al. Increased IL-10/IL-17 ratio is aggravated along with the prognosis of patients with chronic lymphocytic leukemia. Int Immunopharmacol. 2016; 40: 57-64. google scholar
- 45. Shevach EM, DiPaolo RA, Andersson J, Zhao DM, Stephens GL, Thornton AM. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev. 2006;212:60-73. google scholar
- 46. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E, et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood. 2005;106(6):2018-25 google scholar
- 47. Deutsch V, Perry C, Polliack A. Expansion of regulatory T cells in B chronic lymphocytic leukemia: enhanced ’brakes’ on host immunity. Leuk Lymphoma. 2009;50(5):687-8. google scholar
- 48. Jak M, Mous R, Remmerswaal EB, Spijker R, Jaspers A, Yague A, et al. Enhanced formation and survival of CD4+ CD25hi Foxp3+ T-cells in chronic lymphocytic leukemia. Leuk Lymphoma. 2009;50(5):788-801. google scholar
- 49. D’Arena G, Laurenti L, Minervini MM, Deaglio S, Bonello L, De Martino L,et al. Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease. Leuk Res. 2011;35(3):363-8. google scholar
- 50. Lad DP, Varma S, Varma N, Sachdeva MU, Bose P, Malhotra P. Regulatory T-cell and T-helper 17 balance in chronic lymphocytic leukemia progression and autoimmune cytopenias. Leuk Lymphoma. 2015;56(8):2424-8. google scholar
- 51. Chen N, Lv X, Li P, Lu K, Wang X. Role of high expression of IL-9 in prognosis of CLL. Int J Clin Exp Pathol. 2014;7(2):716-21. google scholar
- 52. Jaffe ES, Harris NL, Stein H, Isaacson PG. Classification of lymphoid neoplasms: the microscope as a tool for disease discovery. Blood. 2008;112(12):4384-99. google scholar
- 53. Qiu L, Lai R, Lin Q, Lau E, Thomazy DM, Calame D, et al. Autocrine release of interleukin-9 promotes Jak3-dependent survival of ALK+ anaplastic large-cell lymphoma cells. Blood. 2006;108(7):2407-15. google scholar
- 54. Pascutti MF, Jak M, Tromp JM, Derks IA, Remmerswaal EB, Thijssen R, et al. E. IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells. Blood. 2013;122(17):3010-9. google scholar
- 55. Ahearne MJ, Willimott S, Pinon L, Kennedy DB, Miall F, Dyer MJ, et al. Enhancement of CD154/IL4 proliferation by the T follicular helper (Tfh) cytokine, IL21 and increased numbers of circulating cells resembling Tfh cells in chronic lymphocytic leukaemia. Br J Haematol. 2013;162(3):360-70. google scholar
- 56. De Totero D, Meazza R, Capaia M, Fabbi M, Azzarone B, Balleari E, et al. The opposite effects of IL-15 and IL-21 on CLL B cells correlate with differential activation of the JAK/STAT and ERK1/2 pathways. Blood. 2008;111(2):517-24. google scholar
- 57. Fluckiger AC, Rossi JF, Bussel A, Bryon P, Banchereau J, Defrance T. Responsiveness of chronic lymphocytic leukemia B cells activated via surface Igs or CD40 to B-cell tropic factors. Blood. 1992;80(12):3173-81. google scholar
- 58. Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352(8):804-15. google scholar
- 59. Fabbri G, Dalla-Favera R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer. 2016;16(3):145-62. google scholar
- 60. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101-5. google scholar
- 61. Hoogeboom R, van Kessel KP, Hochstenbach F, Wormhoudt TA, Reinten RJ, Wagner K, et al. A mutated B cell chronic lymphocytic leukemia subset that recognizes and responds to fungi. J Exp Med. 2013;210(1):59-70. google scholar
- 62. Kawasaki K, Minoshima S, Nakato E, Shibuya K, Shintani A, Schmeits JL, et al. One-megabase sequence analysis of the human immunoglobulin lambda gene locus. Genome Res. 1997;7(3):250-61. google scholar
- 63. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest. 1998;102(8):1515-25. google scholar
- 64. Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smilevska T, et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood. 2007;109(1):259-70. google scholar
- 65. Dancescu M, Rubio-Trujillo M, Biron G, Bron D, Delespesse G, Sarfati M. Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J Exp Med. 1992;176(5):1319-26. google scholar
- 66. Douglas RS, Capocasale RJ, Lamb RJ, Nowell PC, Moore JS. Chronic lymphocytic leukemia B cells are resistant to the apoptotic effects of transforming growth factor-beta. Blood. 1997;89(3):941-7. google scholar
- 67. Coscia M, Pantaleoni F, Riganti C, Vitale C, Rigoni M, Peola S, et al. IGHV unmutated CLL B cells are more prone to spontaneous apoptosis and subject to environmental prosurvival signals than mutated CLL B cells. Leukemia. 2011;25(5):828-37. google scholar
- 68. Steele AJ, Prentice AG, Cwynarski K, Hoffbrand AV, Hart SM, Lowdell MW, et al. The JAK3-selective inhibitor PF-956980 reverses the resistance to cytotoxic agents induced by interleukin-4 treatment of chronic lymphocytic leukemia cells: potential for reversal of cytoprotection by the microenvironment. Blood. 2010;116(22):4569-77. google scholar
- 69. Schleiss C, Ilias W, Tahar O, Güler Y, Miguet L, Mayeur-Rousse C, et al. BCR-associated factors driving chronic lymphocytic leukemia cells proliferation ex vivo. Sci Rep. 2019;9(1):701. google scholar
- 70. Burger JA, Gandhi V. The lymphatic tissue microenvironments in chronic lymphocytic leukemia: in vitro models and the significance of CD40-CD154 interactions. Blood. 2009;114(12):2560-1. google scholar
- 71. Gobessi S, Laurenti L, Longo PG, Sica S, Leone G, Efremov DG. ZAP-70 enhances B-cell-receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells. Blood. 2007;109(5):2032-9. google scholar
- 72. Zum Buschenfelde CM, Wagner M, Lutzny G, Oelsner M, Feuerstacke Y, Decker T, et al. Recruitment of PKC-betaII to lipid rafts mediates apoptosis-resistance in chronic lymphocytic leukemia expressing ZAP-70. Leukemia. 2010;24(1):141-52. google scholar
- 73. Leveille E, Chan LN, Mirza AS, Kume K, Muschen M. SYK and ZAP70 kinases in autoimmunity and lymphoid malignancies. Cell Signal. 2022;94:110331. google scholar
- 74. Monserrat J, Sanchez MA, de Paz R, Dıaz D, Mur S, Reyes E, et al. Distinctive patterns of naıve/memory subset distribution and cytokine expression in CD4 T lymphocytes in ZAP-70 B-chronic lymphocytic patients. Cytometry B Clin Cytom. 2014;86(1):32-43. google scholar
- 75. Hoffbrand AV, Panayiotidis P, Reittie J, Ganeshaguru K. Autocrine and paracrine growth loops in chronic lymphocytic leukemia. Semin Hematol. 1993;30(4):306-17. google scholar
- 76. Pistoia V. Production of cytokines by human B cells in health and disease. Immunol Today. 1997;18(7):343-50. google scholar
- 77. Ghamlouch H, Ouled-Haddou H, Damaj G, Royer B, Gubler B, Marolleau JP. A combination of cytokines rescues highly purified leukemic CLL B-cells from spontaneous apoptosis in vitro. PLoS One. 2013;8(3):e60370. google scholar
- 78. Gallego A, Vargas JA, Castejoı n R, Citores MJ, Romero Y, Millaın I, et al. Production of intracellular IL-2, TNF-alpha, and IFN-gamma by T cells in B-CLL. Cytometry B Clin Cytom. 2003;56(1):23-9. google scholar
- 79. Rossmann ED, Lewin N, Jeddi-Tehrani M, Osterborg A, Mellstedt H. Intracellular T cell cytokines in patients with B cell chronic lymphocytic leukaemia (B-CLL). Eur J Haematol. 2002;68(5):299-306. google scholar
- 80. Podhorecka M, Dmoszynska A, Rolinski J. Intracellular IFN-gamma expression by CD3+/CD8+ cell subset in B-CLL patients correlates with stage of the disease. Eur J Haematol. 2004;73(1):29-35. google scholar
- 81. Işıksacan N, Çınar S, Aktaş Çetin E, Aktan M, Deniz G. Cytokine Contents in Chronic Lymphocytic Leukemia: Association with ZAP70 Expression. Turk J Haematol. 2016;33(3):202-8. google scholar
- 82. Kater AP, van Oers MH, Kipps TJ. Cellular immune therapy for chronic lymphocytic leukemia. Blood. 2007;110(8):2811-8. google scholar
- 83. Chen J, Moore A, Ringshausen I. ZAP-70 Shapes the immune microenvironment in B cell malignancies. Front Oncol. 2020;10:595832. google scholar