BÖLÜM


DOI :10.26650/B/LS17LS30.2025.038.014   IUP :10.26650/B/LS17LS30.2025.038.014    Tam Metin (PDF)

Embryonic Stem Cells Derivatives: Immunology and Therapeutic Benefits

Sibel Bulgurcuoğlu KuranBilge Şadan Özsait Selçuk

Human embryonic stem cells (hESCs) have the capability to develop into various cell types including adult cells. This characteristic of hESCs has been very attractive to researchers due to their potential applications in regenerative medicine and therapeutics such as stem cell (SC) transplantation. On the other hand, the immunologic properties and the risk of teratoma formation after transplantation have been the major challenges in treatment. To overcome these challenges, several approaches were developed such as forming hESC derivates or establishing hESC banks comprised of a vast diversity of major histocompatibility antigen-presenting cells. Although the tremendous potential of hESCs has been tempting, the use of adult stem cells in therapeutic approaches has exceeded embryonic cells. In this review, first, we have briefly summarized the preimplantation embryo development, the isolation of hESCs, and the immunologic properties of these cells, and then presented different examples for ESCs derivatives. 



Referanslar

  • 1. Dale B The zygote and early embryo Dale B, editor Fertilization, The beginning of life Cambridge University Press; 2018 p 86-106 google scholar
  • 2. Ebner T Embryo development and assessment of viability Gardner DK, editor In vitro fertilization a practical approach CRC Press; 2006 p 203-11 google scholar
  • 3. Svoboda P Mammalian zygotic genome activation Semin Cell Dev Biol 2018;84:118-26 google scholar
  • 4. Eiges R, Reubinoff B Human embryonic stem cells In: Gardner DK, Weissman A Howles M, Shoham Z Textbook of assisted reproductive techniques First edition Taylor and Francis; 2004 p 867-69 google scholar
  • 5. Rossant J, Papaioannou VE The relationship between embryonic, embryonal carcinoma and embryo-derived stem cells Cell Differ 1984;15(2-4):155-61 google scholar
  • 6. Chen G, Yin S, Zeng H, Li H, Wan X Regulation of embryonic stem cell self-renewal Life (Basel) 2022;12(8):1151 google scholar
  • 7. Yu J, Thomson JA Pluripotent stem cell lines Genes Dev 2008;22(15):1987-97 google scholar
  • 8. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al Embryonic stem cell lines derived from human blastocysts Science 1998;282(5391):1145-47 google scholar
  • 9. Khan FA, Almohazey D, Alomari M, Almofty SA Isolation, culture, and functional characterization of human embryonic stem cells: current trends and challenges Stem Cells Int 2018;2018:1429351 google scholar
  • 10. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro Nat Biotechnol 2000;18(4):399-404 google scholar
  • 11. Ellerstrom C, Strehl R, Moya K, Andersson K, Bergh C, Lundin K, et al . Derivation of a xeno-free human embryonic stem cell line. Stem Cells. 2006;24(1):2170-76. google scholar
  • 12. Amit M, Margulets V, Segev H, Shariki K, Laevsky I, Coleman R, et al. Human feeder layers for human embryonic stem cells. Biol Reprod. 2003;68(6):2150-56. google scholar
  • 13. Strom S, Inzunza J, Grinnemo KH, Holmberg K, Matilainen E, Stromberg AM, et al. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod. 2007;22(12):3051-58. google scholar
  • 14. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24(2):185-87. google scholar
  • 15. Loring JF, Rao MS. Establishing standards for the characterization of human embryonic stem cell lines. Stem Cells. 2006;24(1):145-50. google scholar
  • 16. Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 2007;25(1):24-32. google scholar
  • 17. Weatherbee BAT, Cui T, Zernicka-Goetz M. Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev Biol. 2021;474:91-9. google scholar
  • 18. Fu X, Cui K, Yi Q, Yu L, Xu Y. DNA repair mechanisms in embryonic stem cells. Cell Mol Life Sci. 2017;74(3):487-93. google scholar
  • 19. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153:1228-38. google scholar
  • 20. Draper JS, Pigott C, Thomson JA, Andrews PW. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat. 2002;200(Pt 3):249-58. google scholar
  • 21. Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher L, et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells. 2004;22:448-56. google scholar
  • 22. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212-15. google scholar
  • 23. Borstlap J, Kurtz A. Integration of immunological aspects in the European human embryonic stem cell registry. Eur J Immunol. 2008;38(5):1181-5. google scholar
  • 24. Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29. google scholar
  • 25. Bifari F, Pacelli L, Krampera M. Immunological properties of embryonic and adult stem cells. World J Stem Cells. 2010;2(3):50-60. google scholar
  • 26. Szot GL, Yadav M, Lang J, Kroon E, Kerr J, Kadoya K, et al. Tolerance induction and reversal of diabetes in mice transplanted with human embryonic stem cell-derived pancreatic endoderm. Cell Stem Cell. 2015;16(2):148-57. google scholar
  • 27. Pearl JI, Lee AS, Leveson-Gower DB, Sun N, Ghosh Z, Lan F, et al. Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell. 2010;8(3):309-417. google scholar
  • 28. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988;335(6187):256-9. google scholar
  • 29. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786-98. google scholar
  • 30. Yang HM, Moon SH, Choi YS, Park SJ, Lee YS, Lee HJ, et al. Therapeutic efficacy of human embryonic stem cell-derived endothelial cells in humanized mouse models harboring a human immune system. Arterioscler Thromb Vasc Biol. 2013;33(12):2839-49. google scholar
  • 31. Drukker M, Benvenisty N. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol. 2004;22(3):136-41. google scholar
  • 32. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet. 2005;37(10):1099-103. google scholar
  • 33. Przyborski SA. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells. 2005;23,1242-50. google scholar
  • 34. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, e al.. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713-20. google scholar
  • 35. Voisin A, Penaguin A, Gaillard A, Leveziel N. Stem cell therapy in retinal diseases. Neural Regen Res. 2023;18(7):1478-85. google scholar
  • 36. Salas A, Duarri A, Fontrodona L, Ramfrez DM, Badia A, Isla-Magrane H, et al. Cell therapy with hiPSC-derived RPE cells and RPCs prevents visual function loss in a rat model of retinal degeneration. Mol Ther Methods Clin Dev. 2021;20:688-702. google scholar
  • 37. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 2006;8(3):189-99. google scholar
  • 38. Binder S, Stolba U, Krebs I, Kellner L, Jahn C, Feichtinger H, et al. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am J Ophthalmol. 2002;133(2):215-25. google scholar
  • 39. MacLaren RE, Bird AC, Sathia PJ, Aylward GW. Long-term results of submacular surgery combined with macular translocation of the retinal pigment epithelium in neovascular age-related macular degeneration. Ophthalmology. 2005;112(12):2081-7. google scholar
  • 40. Aisenbrey S, Lafaut BA, Szurman P, Hilgers RD, Esser P, Walter P, et al. Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol. 2006;124(2):183-8. google scholar
  • 41. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713-20. google scholar
  • 42. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509-16. google scholar
  • 43. Li SY, Liu Y, Wang L, Wang F, Zhao TT, Li QY, et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration: 5-years’ follow-up. Cell Prolif. 2021;54(9):e13100. google scholar


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.