BÖLÜM


DOI :10.26650/B/LS17LS30.2025.038.012   IUP :10.26650/B/LS17LS30.2025.038.012    Tam Metin (PDF)

Mesenchymal Stem Cells Researches in the Animal Models

Sibel KöktürkSibel Doğan

MSCs are multipotent stem cells, described by their capability to self-renewal, while continuing the ability to differentiate into various cell lineages from their own germ layer. Research in MSC therapy keep evolving, with hopeful results and increasing expectations in the medicine. MSCs therapy is attributed on its immunomodulatory, regenerative and anti-inflammatory potency. MSCs can differentiate into the necessary cell types, giving permission them to regenerate the damaged tissue. MSCs have a perfect immunomodulation capability through paracrine signaling with various growth factors and cytokines, leading to vascularization, reducing inflammation and proliferation. Recently, MSCs are predominantly researched for tissue engineering therapies, regenerative medicine practices and the correction of genetic diseases. The animal models are very important for the development of regenerative medicine practices and possible treatments of diseases for the purpose of application in human clinical experiment. This reason, the research orienting on examining the therapeutic potential of MSCs on the animal models in the cardiology, urology, orthopedy, pneumology, dermatology, ophthalmology and dentistry has greatly increased.



Referanslar

  • 1. Hernigou P. Bone transplantation and tissue engineering, part IV. Mesenchymal stem cells: history in orthopedic surgery from cohnheim and goujon to the nobel prize of Yamanaka. International orthopaedics. 2015;39(4):807-17. google scholar
  • 2. Redzic A, Smajilagic A, Aljicevic M, Berberovic L. In vivo osteoinductive effect and in vitro isolation and cultivation bone marrow mesenchymal stem cells. Collegium Antropologicum. 2010;34(4):1405-9. google scholar
  • 3. Friedenstein AJ, PetrakovaKV,Kurolesova AI, Frolova ĞP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230-47. google scholar
  • 4. Oliva J, Pacini S, Canals JM, Lim M. Editorial: mesenchymal stromal cells: preclinical and clinical challenges. Front Cell Dev Biol. 2022;10:969178. google scholar
  • 5. Dias IE, Pinto PO, Barros LC, Viegas CA, Dias IR, Carvalho PP. Mesenchymal stem cells therapy in companion animals: useful for immune-mediated diseases? BMC Vet Res. 2019;15(1):358. google scholar
  • 6. Dias IE, Viegas CA, Requicha JF, Saavedra MJ, Azevedo JM, Carvalho PP, et al. Mesenchymal stem cell studies in the goat model for biomedical research-a review of the scientific literature. Biology (Basel). 2022;11(9):1276. google scholar
  • 7. Kalodimou V, Kontogiorgi M, Papalois A. Development of a newmethod for the isolation of viable mesenchymal stem cells for transplantation in animal models. Cardiovasc Disord Med. 2016;1(1):16-20. google scholar
  • 8. Leach JK, Whitehead J. Materials-directed differentiation of mesenchymal stem cells for tissue engineering and regeneration. ACS Biomater Sci Eng. 2018;4(4):1115-27. google scholar
  • 9. Noronha NC, Mizukami A, Caliari-Oliveira C, Cominal JG, Rocha JLM, Covas DT, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019;10(1):131. google scholar
  • 10. Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig. 2019;6:19. google scholar
  • 11. Gugjoo MB, Amarpal, Fazili MuR, Shah RA, Saleem Mir M, Sharma GT. Goat mesenchymal stem cell basic research and potential applications. Small Ruminant Research. 2020;183:106045. google scholar
  • 12. Harness EM, Mohamad-Fauzi NB, Murray JD. MSC therapy in livestock models. Translational Animal Science. 2022;6(1):txac012. google scholar
  • 13. Hotham WE, Henson FMD. The use of large animals to facilitate the process of MSC going from laboratory to patient- ‘bench to bedside’. Cell Biol Toxicol. 2020;36(2):103-14. google scholar
  • 14. Harding J, Roberts RM, Mirochnitchenko O. Large animal models for stem cell therapy. Stem Cell Res Ther. 2013;4(2):23. google scholar
  • 15. Maass A, Kajahn J, Guerleyik E, Guldner NW, Rapoport DH, Kruse C. Towards a pragmatic strategy for regenerating infarcted myocardium with glandular stem cells. Ann Anat. 2009;191(1):51-61. google scholar
  • 16. Madeja Z, Pawlak P, Piliszek A. Beyond the mouse: non-rodent animal models for study of early mammalian development and biomedical research. Int J Dev Biol. 2019;63(3-4-5):187-201. google scholar
  • 17. Dias IE, Cardoso DF, Soares CS, Barros LC, Viegas CA, Carvalho PP, et al. Clinical application of mesenchymal stem cells therapy in musculoskeletal injuries in dogs-a review of the scientific literature. Open Vet J. 2021;11(2):188-202. google scholar
  • 18. Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol Ther (Seoul). 2019;27(1):25-33. google scholar
  • 19. Torres-Torrillas M, Rubio M, Damia E, Cuervo B, del Romero A, Pelaez P, et al. Adipose-derived mesenchymal stem cells: a promising tool in the treatment of musculoskeletal diseases. International Journal of Molecular Sciences. 2019;20(12):3105. google scholar
  • 20. Quimby JM, Borjesson DL. Mesenchymal stem cell therapy in cats: Current knowledge and future potential. Journal of Feline Medicine and Surgery. 2018;20(3):208-16. google scholar
  • 21. Willerth SM, Sakiyama-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. Stem Journal. 2019;1:1-25. google scholar
  • 22. Klimek K, Ginalska G. Proteins and peptides as important modifiers of the polymer scaffolds for tissue engineering applications-a review. Polymers (Basel). 2020;12(4):844. google scholar
  • 23. Jang HK, Kim BS. Modulation of stem cell differentiation with biomaterials. IntJ Stem Cells. 2010;3(2):80-4. google scholar
  • 24. Zhang Y, Liao S, Fu Q, Hamrick M. Editorial: Mesenchymal stem cell senescence and rejuvenation. Front Cell Dev Biol. 2021;9:772479 google scholar
  • 25. Marx C, Silveira MD, BeyerNardiN.Adipose-derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 2015;24(7):803-13. google scholar
  • 26. Markoski MM. Advances in the use of stem cells in veterinary medicine: from basic research to clinical practice. Scientifica (Cairo). 2016;2016:4516920. google scholar
  • 27. Peralta OA, Carrasco C, Vieytes C, Tamayo MJ, Mu~noz I, Sepulveda S, et al. Safety and efficacy of a mesenchymal stem cell intramammary therapy in dairy cows with experimentally induced Staphylococcus aureus clinical mastitis. Scientific Reports. 2020;10(1):2843. google scholar
  • 28. Cahuascanco B, Bahamonde J, Huaman O, Jervis M, Cortez J, Palomino J, et al. Bovine fetal mesenchymal stem cells exert antiproliferative effect against mastitis causing pathogen Staphylococcus aureus. Veterinary Research. 2019;50(1):25. google scholar
  • 29. Tao H, Han Z, Han ZC, Li Z. Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells International. 2016;2016:1314709. google scholar
  • 30. Costa CRM, Feitosa MLT, Rocha AR, Bezerra DO, Leite YKC, Argolo Neto NM, et al. Adipose stem cells in reparative goat mastitis mammary gland. PLOS ONE. 2019;14(10):e0223751. google scholar
  • 31. Hill ABT, Bressan FF, Murphy BD, Ğarcia JM. Applications of mesenchymal stem cell technology in bovine species. Stem Cell Research & Therapy. 2019;10(1):44. google scholar
  • 32. Zhao T, Zhang Z-N, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474(7350):212-5. google scholar
  • 33. Poncelet AJ, Vercruysse J, Saliez A, Ğianello P. Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation. 2007;83(6):783-90. google scholar
  • 34. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838-43. google scholar
  • 35. Li J, Ezzelarab MB, Cooper DK. Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation. 2012;19(5):273-85. google scholar
  • 36. Emborg ME, Joers V, Fisher R, Brunner K, Carter V, Ross C, et al. Intraoperative intracerebral MRI-guided navigation for accurate targeting in nonhuman primates. Cell Transplant. 2010;19(12):1587-97. google scholar
  • 37. Daadi MM, Grueter BA, Malenka RC, Redmond DE, Jr., Steinberg GK. Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of Parkinson’s disease. PLoS One. 2012;7(7):e41120. google scholar
  • 38. Redmond DE, Jr., Weiss S, Elsworth JD, Roth RH, Wakeman DR, Bjugstad KB, et al. Cellular repair in the parkinsonian nonhuman primate brain. Rejuvenation Res. 2010;13(2-3):188-94. google scholar
  • 39. Joers VL, Emborg ME. Preclinical assessment of stem cell therapies for neurological diseases. Ilar j. 2009;51(1):24-41. google scholar
  • 40. Sasaki M, Honmou O, Radtke C, Kocsis JD. Development of a middle cerebral artery occlusion model in the nonhuman primate and a safety study of i.v. infusion of human mesenchymal stem cells. PLoS One. 2011;6(10):e26577. google scholar
  • 41. Mazhari R, Hare JM. Translational findings from cardiovascular stem cell research. Trends Cardiovasc Med. 2012;22(1):1-6. google scholar
  • 42. Poh KK, Sperry E, Young RG, Freyman T, Barringhaus KG, Thompson CA. Repeated direct endomyocardial transplantation of allogeneic mesenchymal stem cells: safety of a high dose, ”off-the-shelf”, cellular cardiomyoplasty strategy. Int J Cardiol. 2007;117(3):360-4. google scholar
  • 43. Guercio A, Di Marco P, Casella S, Cannella V, Russotto L, Purpari G, et al. Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol Int. 2012;36(2):189-94. google scholar
  • 44. Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev. 2010;16(1):105-15. google scholar
  • 45. Vieira NM, Valadares M, Zucconi E, Secco M, Bueno CR, Jr., Brandalise V, et al. Human adipose-derived mesenchymal stromal cells injected systemically into GRMD dogs without immunosuppression are able to reach the host muscle and express human dystrophin. Cell Transplant. 2012;21(7):1407-17. google scholar
  • 46. Bull ND, Martin KR. Concise review: toward stem cell-based therapies for retinal neurodegenerative diseases. Stem Cells. 2011;29(8):1170-5. google scholar
  • 47. Lin CS, Lin G, Lue TF. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev. 2012;21(15):2770-8. google scholar
  • 48. Ğomes JA, Ğeraldes Monteiro B, Melo ĞB, Smith RL, Cavenaghi Pereira da Silva M, Lizier NF, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest OphthalmolVis Sci. 2010;51(3):1408-14. google scholar
  • 49. Li J, Ezzelarab MB, Ayares D, Cooper DK. The potential role of genetically-modified pig mesenchymal stromal cells in xenotransplantation. Stem Cell Rev Rep. 2014;10(1):79-85. google scholar
  • 50. Flisikowska T, Kind A, Schnieke A. Ğenetically modified pigs to model human diseases. J Appl Ğenet. 2014;55(1):53-64. google scholar
  • 51. Bolli R, Ğhafghazi S. Cell Therapy Needs Rigorous Translational Studies in Large Animal Models. J Am Coll Cardiol. 2015;66(18):2000-4. google scholar
  • 52. Seaton M, Hocking A, Ğibran NS. Porcine models of cutaneous wound healing. ILAR J. 2015;56(1):127-38. google scholar
  • 53. Whitworth DJ, Banks TA. Stem cell therapies for treating osteoarthritis: prescient or premature? Vet J. 2014;202(3):416-24. google scholar
  • 54. Lee KB, Hui JH, Song IC, Ardany L, Lee EH. Injectable mesenchymal stem cell therapy for large cartilage defects-a porcine model. Stem Cells. 2007;25(11):2964-71. google scholar
  • 55. Ando W, Tateishi K, Hart DA, Katakai D, Tanaka Y, Nakata K, et al. Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials. 2007;28(36):5462-70. google scholar
  • 56. Rubessa M, Polkoff K, Bionaz M, Monaco E, Milner DJ, Holllister SJ, et al. Use of Pig as a Model for Mesenchymal Stem Cell Therapies for Bone Regeneration. Anim Biotechnol. 2017;28(4):275-87. google scholar
  • 57. Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Repair Regen. 2001;9(2):66-76. google scholar
  • 58. Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med. 2007;4 Suppl 1:S21-6. google scholar
  • 59. Wilson SM, Goldwasser MS, Clark SG, Monaco E, Bionaz M, Hurley WL, et al. Adipose-derived mesenchymal stem cells enhance healing of mandibular defects in the ramus of swine. J Oral Maxillofac Surg. 2012;70(3):e193-203. google scholar
  • 60. Gao YH, Guan WJ, Ma YH. A Short Review: Research progress of bovine stem cells. Cell Mol Biol (Noisy-le-grand). 2015;61(5):74-8. google scholar
  • 61. Wolfe DF. Review: Abnormalities of the bull - occurrence, diagnosis and treatment of abnormalities of the bull, including structural soundness. Animal. 2018;12(s1):s148-57. google scholar
  • 62. Luo CC,YinDY, Gao XJ, Li QZ, Zhang L. Goat mammary gland expression of Cecropin B to inhibit bacterial pathogens causing mastitis. Anim Biotechnol. 2013;24(1):66-78. google scholar
  • 63. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000;6(11):1282-6. google scholar
  • 64. Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol. 2012;47(6):458-64. google scholar
  • 65. Shu CC, Dart A, Bell R, Dart C, Clarke E, Smith MM, et al. Efficacy of administered mesenchymal stem cells in the initiation and co-ordination of repair processes by resident disc cells in an ovine (Ovis aries) large destabilizing lesion model of experimental disc degeneration. JOR Spine. 2018;1(4):e1037. google scholar
  • 66. Behr L, Hekmati M, Fromont G, Borenstein N, Noel LH, Lelievre-Pegorier M, et al. Intra renal arterial injection of autologous mesenchymal stem cells in an ovine model in the postischemic kidney. Nephron Physiol. 2007;107(3):p65-76. google scholar
  • 67. Gupta MC, Theerajunyaporn T, Maitra S, Schmidt MB, Holy CE, Kadiyala S, et al. Efficacy of mesenchymal stem cell enriched grafts in an ovine posterolateral lumbar spine model. Spine (Phila Pa 1976). 2007;32(7):720-6. google scholar
  • 68. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology. 2001;94(6):1133-8. google scholar
  • 69. Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol Biochem. 2018;46(4):1650-67. google scholar
  • 70. Mohamad-Fauzi N, Ross PJ, Maga EA, Murray JD. Impact of source tissue and ex vivo expansion on the characterization of goat mesenchymal stem cells. J Anim Sci Biotechnol. 2015;6(1):1. google scholar
  • 71. Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48(12):3464-74. google scholar
  • 72. Petrella F, Toffalorio F, Brizzola S, De Pas TM, Rizzo S, Barberis M, et al. Stem cell transplantation effectively occludes bronchopleural fistula in an animal model. Ann Thorac Surg. 2014;97(2):480-3. google scholar
  • 73. Proffen BL, McElfresh M, Fleming BC, Murray MM. A comparative anatomical study of the human knee and six animal species. Knee. 2012;19(4):493-9. google scholar
  • 74. Nam HY, Karunanithi P, Loo WC, Naveen S, Chen H, Hussin P, et al. The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther. 2013;15(5):R129. google scholar
  • 75. Bascu~n 'an AL, Biedrzycki A, Banks SA, Lewis DD, Kim SE. Large animal models for anterior cruciate ligament research. Front Vet Sci. 2019;6:292. google scholar
  • 76. David Garcıa-Bernal D, Garcıa-Arranz M, Yanez RM, Hervas-Salcedo R, Alfonso Cortes A, Fernandez-Garcıa M, et al. The current status of mesenchymal stromal cells: controversies, unresolved issues and some promising solutions to improve their therapeutic efficacy. Front Cell Dev Biol. 2021;9:650664. google scholar
  • 77. Sykova E, Cizkova D, Kubinova S. Corrigendum: mesenchymal stem cells in treatment of spinal cord injury and amyotrophic lateral sclerosis. Front Cell Dev Biol. 2021;9:770243. google scholar
  • 78. Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, et al. Regenerative medicine for the treatment of ischemic heart disease; status and future perspectives. Front Cell Dev Biol. 2021;9:704903. google scholar
  • 79. Chua K, Lim FP, Lee VKM, Phan TT, Tai BC, Tan YK. Cord lining mesenchymal stem cells have a modest positive effect on angiogenesis in hindlimb ischemia. Front Cell Dev Biol. 2021;8:596170. google scholar
  • 80. Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The lack of a representative tendinopathy model hampers fundamental mesenchymal stem cell research. Front Cell Dev Biol. 2021;9:651164. google scholar
  • 81. Wang L-T, Lee Y-W, Bai C-H, Chiang H-C, Wang H-H, Yen BL, et al. A rapid and highly predictive in vitro ccreening platform for osteogenic natural compounds using human runx2 transcriptional activity in mesenchymal stem cells. Front Cell Dev Biol. 2021;8:651164. google scholar
  • 82. Kulebyakin K, Tyurin-Kuzmin P, Efimenko A, Voloshin N, Kartoshkin A, Karagyaur M, et al. Decreased insulin sensitivity in telomerase-immortalized mesenchymal stem cells affects efficacy and outcome of adipogenic differentiation in vitro. Front Cell Dev Biol. 2021;9:662078. google scholar
  • 83. Barachini S, Montali M, Panvini FM, Carnicelli V, Gatti GL, Piolanti N, et al. Mesangiogenic progenitor cells Are tissue specific and cannot be isolated from adipose tissue or umbilical cord blood. Front Cell Dev Biol. 2021;9:669381. google scholar
  • 84. Fan C, Liao M, Xie L, Huang L, Lv S, Cai S, et al. Single-cell transcriptome integration analysis reveals the correlation between mesenchymal stromal cells and ibroblasts. Frontiers in Genetics. 2022;13:798331. google scholar
  • 85. Alves-Paiva RM, Nascimento Sd, De Oliveira D, Coa L, Alvarez K, Hamerschlak N, et al. Senescence state in mesenchymal stem cells at low passages: implications in clinical use. Front Cell Dev Biol. 2022;10:858996. google scholar


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.