BÖLÜM


DOI :10.26650/B/T3.2024.40.029   IUP :10.26650/B/T3.2024.40.029    Tam Metin (PDF)

3 Boyutlu Yazıcıların Di̇ji̇tal İş Akışı Platformundaki̇ Rolü: Di̇ş Heki̇mli̇ği̇nde Uygulamaları

Burak Kaan BirgülÜmit Begüm Güray EfesAyşe Dina Erdilek

Arama stratejisi, diş hekimliğinde 3B yazıcıların araştırılmasına odaklanarak 2019-2023 yılları arasında İngilizce ve Türkçe olarak yayınlanan makaleleri belirlemek için PubMed, Google Scholar ve Scopus gibi elektronik veri tabanlarının incelenmesini içermektedir. Arama stratejisi PubMed MeSH terimleri temel alınarak belirlenmiştir. Aramada kullanılan anahtar kelimeler aşağıdakileri içermektedir: ((“Printing, Three-Dimensional”[Mesh]) AND “Dentistry, Operative”[Mesh]) AND “Workflow”[Mesh]) AND “Biomedical and Dental Materials”[Mesh]. 3B yazıcılar, özelleştirilmiş 3B nesneleri otomatik olarak üretmek için bilgisayar destekli dijital tasarım modellerine dayanan gelişmiş üretim teknolojileridir. Geleneksel yöntemlerin azalması, diş hekimliğindeki iş akışına tamamen yeni bir boyut getirmiştir. 3B yazıcıların kullanımı, tek bir seansta optimum estetik sunan restorasyonların üretilmesini sağlar. Geleneksel üretim tekniklerine kıyasla 3B yazıcılar, üretim maliyetlerinin düşmesi, daha hızlı teslimat süreleri, kişiselleştirilmiş ve karmaşık ürünler sayesinde üretim verimliliğinin artması, malzeme ve enerji tüketiminin azalması gibi çeşitli avantajlar sunuyor. 3B yazıcılar diş hekimliğinde çeşitli cihazlar geliştirmek için de kullanılmaktadır. Bu cihazlara örnek olarak kron-köprü üretimi, ortodontik apareyler, cerrahi kılavuz hazırlama verilebilir. Ayrıca restoratif diş hekimliğinde, bu yazıcılar ağız içi ve ağız dışı tarayıcılar kullanılarak dijital gülüş tasarımında ve bilgisayar destekli tasarım (CAD) ve bilgisayar destekli üretim (CAM) sistemleri kullanılarak restorasyon tasarımı ve üretiminde kullanılmaktadır. Önümüzdeki yıllarda 3B yazıcıların gelişmeye devam etmesi ve çeşitli sektörlerde ek teknolojik ilerlemeler ve çeşitli seçenekler sunması bekleniyor. Yakın gelecekte bu uygulamalar, özellikle tıp alanında devrim niteliğinde yenilikler getirme potansiyeline sahiptir. Bununla birlikte, mevcut bağlamda biyouyumluluk ve fizibilite sağlamak için daha fazla araştırma yapılması gerekmektedir.


DOI :10.26650/B/T3.2024.40.029   IUP :10.26650/B/T3.2024.40.029    Tam Metin (PDF)

The Role of 3D Printers in the Digital Workflow Platform: Applications in Dentistry

Burak Kaan BirgülÜmit Begüm Güray EfesAyşe Dina Erdilek

The search strategy incorporated examinations of electronic databases such as PubMed, Google Scholar, and Scopus to identify articles published in English and Turkish between 2019 and 2023, focusing on exploring 3D printers in dentistry. The search strategy was outlined based on PubMed MeSH terms. The keywords used in the search included the following: ((“Printing, Three-Dimensional”[Mesh]) AND “Dentistry, Operative”[Mesh]) AND “Workflow”[Mesh]) AND “Biomedical and Dental Materials”[Mesh]. 3D printers are advanced manufacturing technologies that rely on computer-aided digital design models to produce customized 3D objects automatically. The decline of traditional methods has introduced a completely new dimension to the workflow in dentistry. Using 3D printers enables the production of restorations that offer optimal aesthetics in a single session. In comparison to traditional production techniques, 3D printers offer various advantages such as reduced production costs, faster delivery times, enhanced production efficiency through personalized and intricate products, and decreased material and energy consumption. 3D printers are also used for developing various devices in dentistry. Examples of these devices include crown-bridge production, orthodontic appliances, and surgical guide preparation. Also in restorative dentistry, these printers are used in digital smile design using intraoral and extraoral scanners, as well as restoration design and production using computer-aided design (CAD) and computer-aided manufacturing (CAM) systems. Over the coming years, 3D printers are expected to continue evolving, offering additional technological advancements and diverse options across various industries. Shortly, these applications have the potential to bring revolutionary innovations, particularly in the field of medicine. However, further research is necessary to ensure biocompatibility and feasibility in the current context. 



Referanslar

  • Adibi, S., Zhang, W., Servos, T., & O’Neill, P. (2012). Cone beam computed tomography for general dentists. Open Access Scientific Reports, 1(11), 515-519. https://doi.org/10.4172/scientificreports.515 google scholar
  • Ahrberg, D., Lauer, H. C., Ahrberg, M., & Weigl, P. (2016). Evaluation of fit and efficiency of CAD/CAM fab-ricated all-ceramic restorations based on direct and indirect digitalization: A double-blinded, randomized clinical trial. Clinical Oral Investigations, 20, 291-300. https://doi.org/10.1007/s00784-015-1514-3 google scholar
  • An, H., Fischer, C. M., Miller, S. E., Al-Bitar, K. M., & Luepke, P. G. (2022). A fully digital workflow to ac-hieve predictable esthetic and functional outcomes: A case series. International Journal of Periodontics & Restorative Dentistry, 42(2). google scholar
  • Barazanchi, A., Li, K. C., Al-Amleh, B., Lyons, K., & Waddell, J. N. (2017). Additive technology: Update on current materials and applications in dentistry. Journal of Prosthodontics, 26(2), 156-163. https://doi. org/10.1111/jopr.12441 google scholar
  • Barnatt, C. (2016). 3D printing. Wroclaw, Poland: ExplainingTheFuture.Com. https://explainingthefuture.com/ 3dp3e.html google scholar
  • Bassoli, E., Gatto, A., Iuliano, L., & Grazia Violante, M. (2007). 3D printing technique applied to rapid casting. Rapid Prototyping Journal, 13(3), 148-155. https://doi.org/10.1108/13552540710766948 google scholar
  • Bulut, A. C. (2020). Düşük maliyetli, üç boyutlu bir yazıcı kullanılarak oluşturulan diş modellerinin değerlendirilmesi. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi, 22(3), 461-469. google scholar
  • Camardella, L. T., Vilella, O. V., van Hezel, M. M., & Breuning, K. H. (2017). Genauigkeit von stereolitog-raphisch gedruckten digitalen Modellen im Vergleich zu Gipsmodellen. Journal of Orofacial Orthopedics/ Fortschritte der Kieferorthopadie, 78, 394-402. https://doi.org/10.1007/s00056-017-0107-8 google scholar
  • Cantm, M., Munoz, M., & Olate, S. (2015). Generation of 3D tooth models based on three-dimensional scanning to study the morphology of permanent teeth. International Journal ofMorphology, 33(2), 782-787. https:// doi.org/10.4067/S0717-95022015000200042 google scholar
  • Chan, H. L., Misch, K., & Wang, H. L. (2010). Dental imaging in implant treatment planning. Implant Dentistry, 19(4), 288-298. https://doi.org/10.1097/ID.0b013e3181f16e68 google scholar
  • Chen, H., Yang, X., Chen, L., Wang, Y., & Sun, Y. (2016). Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays. Scientific Reports, 6(1), 19207. https://doi.org/10.1038/srep19207 google scholar
  • Chen, J., Zhang, Z., Chen, X., Zhang, C., Zhang, G., & Xu, Z. (2014). Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. The Journal ofProst-hetic Dentistry, 112(5), 1088-1095. https://doi.org/10.1016/j.prosdent.2014.06.008 google scholar
  • Cui, X., Breitenkamp, K., Finn, M. G., Lotz, M., & D‘Lima, D. D. (2012). Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A, 18(11-12), 1304-1312. https://doi.org/10.1089/ten.tea.2011.0677 google scholar
  • Dawood, A., Marti, B. M., Sauret-Jackson, V., & Darwood, A. (2015). 3D printing in dentistry. British Dental Journal, 219(11), 521-529. https://doi.org/10.1038/sj.bdj.2015.1037 google scholar
  • Dovramadjiev, T., Pavlova, D., & Bankova, A. (2019). Creating a 3D model of dental splint for bruxism. Industry 4.0, 4(4), 167-170. https://doi.org/10.15407/industry40.04.167 google scholar
  • Durack, C., & Patel, S. (2012). Cone beam computed tomography in endodontics. Brazilian Dental Journal, 23, 179-191. https://doi.org/10.1590/S0103-64402012000200014 google scholar
  • Espmdola-Castro, L.F., Monteiro, G.Q.M., Ortigoza, L.S., da Silva, C.H.V., & Souto-Maior, J.R. (2019). A multidisciplinary approach to smile restoration: gingivoplasty, tooth bleaching, and dental re-anatomization. Compendium, 40(9). https://doi.org/10.5792/2192-453X-40.9.625 google scholar
  • Fan, F., Li, N., Huang, S., & Ma, J. (2019). A multidisciplinary approach to the functional and esthetic rehabi-litation of dentinogenesis imperfecta type II: a clinical report. The Journal of Prosthetic Dentistry, 122(2), 95-103. https://doi.org/10.1016/j.prosdent.2018.10.018 google scholar
  • Farooqi, K. M., & Sengupta, P. P. (2015). Echocardiography and three-dimensional printing: sound ideas to touch a heart. Journal of the American Society of Echocardiography, 28(4), 398-403. https://doi.org/10.1016/j. echo.2015.01.001 google scholar
  • Ferreira, J. B., Christovam, I. O., Alencar, D. S., da Motta, A. F., Mattos, C. T., & Cury-Saramago, A. (2017). Accuracy and reproducibility of dental measurements on tomographic digital models: a systematic review and meta-analysis. Dentomaxillofacial Radiology, 46(7), 20160455. https://doi.org/10.1259/dmfr.20160455 google scholar
  • Figliuzzi, M., Mangano, F., & Mangano, C. (2012). A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology. International Journal of Oral and Maxillofacial Surgery, 41(7), 858-862. https://doi.org/10.1016/j.ijom.2012.02.007 google scholar
  • Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C., & Spence, D.M. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 86(7), 3240-3253. https://doi.org/10.1021/ac403140g google scholar
  • Hornick, J. F. (2015). 3D printing will rock the world. CreateSpace Independent Publishing Platform. https:// doi.org/10.1016/B978-0-323-37468-2.00014-2 google scholar
  • Kiarudi, A. H., Eghbal, M. J., Safi, Y., Aghdasi, M. M., & Fazlyab, M. (2015). The applications of cone-beam computed tomography in endodontics: A review of the literature. Iranian Endodontic Journal, 10(1), 16-25. https://doi.org/10.7508/iej.2015.01.04 google scholar
  • Koutsoukis, T., Zinelis, S., Eliades, G., Al-Wazzan, K., Rifaiy, M. A., & Al Jabbari, Y. S. (2015). Selective laser melting technique of Co-Cr dental alloys: A review of structure and properties and comparative analysis with other available techniques. Journal of Prosthodontics, 24(4), 303-312. https://doi.org/10.1111/jopr.12138 google scholar
  • Kurenov, S. N., Ionita, C., Sammons, D., & Demmy, T. L. (2015). Three-dimensional printing to facilitate ana-tomic study, device development, simulation, and planning in thoracic surgery. The Journal of Thoracic and Cardiovascular Surgery, 149(4), 973-979. https://doi.org/10.1016/j.jtcvs.2014.12.022 google scholar
  • Li, X., Xie, B., Jin, J., Chai, Y., & Chen, Y. (2018). 3D printing temporary crown and bridge by temperatu-re-controlled mask image projection stereolithography. Procedia Manufacturing, 26, 1023-1033. https:// doi.org/10.1016/j.promfg.2018.07.130 google scholar
  • Liaw, C. Y., & Guvendiren, M. (2017). Current and emerging applications of 3D printing in medicine. Biofab-rication, 9(2), 024102. https://doi.org/10.1088/1758-5090/aa6b77 google scholar
  • Mai, H. N., Lee, K. B., & Lee, D. H. (2017). The fit of interim crowns fabricated using photopolymer-jet-ting 3D printing. The Journal of Prosthetic Dentistry, 118(2), 208-215. https://doi.org/10.1016/j.pros-dent.2016.12.012 google scholar
  • Özay, M., & Sarıdağ, S. (2023). Diş hekimliğinde fotopolimerizasyon ile 3 boyutlu üretim yöntemleri ve kullanım alanları. Selcuk Dental Journal, 10(2), 479-485. https://doi.org/10.15311/selcukdentj.1135010 google scholar
  • Mohd, J., Abid, H., & Lalit, K. (2019). Current status and applications of 3D scanning in dentistry. Clinical Epidemiology and Global Health, 7(2), 228-233. https://doi.org/10.1016/j.cegh.2018.07.003 google scholar
  • Palmer, N. G., Yacyshyn, J. R., Northcott, H. C., Nebbe, B., & Major, P. W. (2005). Perceptions and attitudes of Canadian orthodontists regarding digital and electronic technology. American Journal of Orthodontics and Dentofacial Orthopedics, 128(2), 163-167. https://doi.org/10.1016/j.ajodo.2005.03.011 google scholar
  • Patel, S. (2009). New dimensions in endodontic imaging: Part 2. Cone beam computed tomography. Internatio-nal Endodontic Journal, 42(6), 463-475. https://doi.org/10.1111/j.1365-2591.2009.01642.x google scholar
  • Scarfe, W. C., Farman, A. G., & Sukovic, P. (2006). Clinical applications of cone-beam computed tomography in dental practice. Journal of the Canadian Dental Association, 72(1), 75. https://doi.org/10.5777/ca.72.1.75 google scholar
  • Tack, P., Victor, J., Gemmel, P., & Annemans, L. (2016). 3D-printing techniques in a medical setting: A systema-tic literature review. Biomedical Engineering Online, 15, 1-21. https://doi.org/10.1186/s12938-016-0186-7 google scholar
  • Thomas, P. A., Krishnamoorthi, D., Mohan, J., Raju, R., Rajajayam, S., & Venkatesan, S. (2022). Digital smi-le design. Journal of Pharmacy & Bioallied Sciences, 14(Suppl 1), S43. https://doi.org/10.4103/jpbs. jpbs_325_22 google scholar
  • Tian, Y., Chen, C., Xu, X., Wang, J., Hou, X., Li, K., ... & Jiang, H. B. (2021). A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning, 2021, Article 6673473. https://doi. org/10.1155/2021/6673473 google scholar
  • Tüylek, Z. (2023). Biyomedikal alanında hızla ilerleyen üretim teknolojisi: 3D yazıcılar. In A. Ateş (Ed.), Her yönüyle mühendislik ve mimarlık araştırmaları (p. 111-144). Klaipeda: SRA Academic Publishing. google scholar
  • Ünüvar, Y.A., Cesur, M.G., & Zortuk, F. B. (2020). Ortodontistler arasında dijital model kullanımının değerlendirilmesi. Selcuk Dental Journal, 7(3), 466-470. https://doi.org/10.15311/selcukdentj.525982 google scholar
  • Vaccarezza, M., & Papa, V. (2015). 3D printing: A valuable resource in human anatomy education. Anatomical Science International, 90(1), 64-65. https://doi.org/10.1007/s12565-015-0272-9 google scholar
  • Van Noort, R. (2012). The future of dental devices is digital. Dental Materials, 28(1), 3-12. https://doi.or-g/10.1016/j.dental.2011.09.001 google scholar
  • Vukicevic, M., Mosadegh, B., Min, J. K., & Little, S. H. (2017). Cardiac 3D printing and its future directions. JACC: Cardiovascular Imaging, 10(2), 171-184. https://doi.org/10.1016/j.jcmg.2016.10.014 google scholar
  • Whitley III, D., Eidson, R. S., Rudek, I., & Bencharit, S. (2017). In-office fabrication of dental implant surgical guides using desktop stereolithographic printing and implant treatment planning software: A clinical report. The Journal of Prosthetic Dentistry, 118(3), 256-263. https://doi.org/10.1016/j.prosdent.2017.01.007 google scholar
  • Worthington, P., Rubenstein, J., & Hatcher, D. C. (2010). The role of cone-beam computed tomography in the planning and placement of implants. The Journal of the American Dental Association, 141, 19S-24S. https:// doi.org/10.14219/jada.archive.2010.0354 google scholar
  • Yavuz, E., & Yılmaz, S. (2021). Diş hekimliğinde yeni ve hızla ilerleyen üretim teknolojisi: 3 boyutlu yazıcılar. Akdeniz Tıp Dergisi, 7(2), 197-205. https://doi.org/10.36824/akdeniztip.901070 google scholar


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.