BÖLÜM


DOI :10.26650/B/LS34CH11CH22/2024.011.008   IUP :10.26650/B/LS34CH11CH22/2024.011.008    Tam Metin (PDF)

Mi̇krobi̇yota, Aşılar ve Patojenlere Karşı Koruyucu Bağışıklığı Etki̇ler Mi̇?

Mustafa Oral ÖncülZerrin Aktaş

Küresel aşılama programları yılda tahmini 2-3 milyon ölümü önlemekle birlikte, hastalık morbiditesini önemli ölçüde azaltmaktadır. Aşılar kas içine, deri altına, ağızdan veya deri içine uygulanır. Giderek artan sayıda çalışma, diğer etkileşimli değişkenlerle birlikte bağırsak mikrobiyotasının enfeksiyon ve aşılamaya karşı hem humoral hem de hücresel tepkileri modüle edebildiğine dair kanıtları desteklemektedir. Bazı aşıların zayıf immünojenite ve sınırlı mukozal ve hücre aracılı immünite etkilerini indükleme kapasitesi sergiledikleri rapor edilmiştir. Zayıf immünojenite sergileyen aşıları gruplandırmak zordur, çünkü aşılara karşı immün yanıtlar birçok faktörden etkilenmektedir. Örneğin, aşılara verilen erken yaşam bağışıklık yanıt tepkileri ve tepkinin büyüklüğünün yaşa bağlı sınırlamaları ile karakterize edildiği rapor edilmiştir. Aşılamaya karşı bağışıklık yanıtları, insan popülasyonundaki bireyler arasında farklılık gösterebilir. Bu aşı tepkisi değişimiyle ilişkili faktörlerden birisi mikrobiyota bileşimidir. İnsan bağırsağı mikrobiyotası, diyet bileşenlerini metabolize ederek ve bağışıklık hücreleri de dahil olmak üzere, konakçı hücrelerle etkileşime giren, çoklu metabolitleri sentezleyerek konakçı fizyolojisini etkileyebilen trilyonlarca ortakçı mikroorganizmadan oluşur. Bağırsak mikrobiyal topluluğu, yaşamın erken dönemlerinde en kapsamlı bağışıklık sistemi koleksiyonuyla birlikte gelişir ve vücuttaki hücreler, bağırsakla ilişkili lenfoid doku, birbirlerinin gelişimini etkilerler. Ayrıca mikrobiyomun bağışıklık sistemi üzerindeki etkileri, bağırsakta lokal yanıt olarak kalmasının ötesine geçer. Bakteri fragmentleri ve metabolitler bağırsak bariyerini geçerek dolaşıma girebilir ve bağışıklık hücrelerini etkileyebilecekleri akciğerler de dahil olmak üzere uzak organlara ulaşabilir.


DOI :10.26650/B/LS34CH11CH22/2024.011.008   IUP :10.26650/B/LS34CH11CH22/2024.011.008    Tam Metin (PDF)

Does It Affect Protective Immunity Against Microbiota, Vaccines and Pathogens?

Mustafa Oral ÖncülZerrin Aktaş

Global immunization programmes prevent an estimated 2–3 million deaths per year and markedly reduce disease morbidity. Vaccines are administered intramuscularly, subcutaneously, orally or intradermally. An increasing number of studies is supporting the evidence that gut microbiota, along with other interplaying variables, is able to modulate both humoral and cellular responses to infection and vaccination. Some vaccines have been reported to exhibit poor immunogenicity and a limited capacity to induce mucosal and cell mediated immunity effects. It is difficult to group vaccines that exhibit poor immunogenicity because immune responses to vaccines can be affected by numerous factors. For example early life immune responses to vaccines have been reported to be characterized by age dependent limitations of the magnitude of the responseImmune responses to vaccination can vary among individuals in the human population. One factor associated with this vaccine response variation is the microbiota composition. The human gut microbiota is composed of trillions of commensal microorganisms that can impact host physiology by metabolizing dietary components and synthesizing multiple metabolites that interact with host cells, including immune cells.The gut microbial community develops during early life together with the most extensive collection of immune cells in the body, the gut-associated lymphoid tissue, where they can influence the development of each other However, the effects of the microbiome on the immune system go beyond acting locally in the intestine. Bacterial fragments and metabolites can translocate across the intestinal barrier, entering the circulation and reaching distant organs, including the lungs, where they can influence immune cells.



Referanslar

  • Gül, B. & Yurdakök Dikmen, B. (2019). AŞI ADJUVANLARI ve İSTENMEYEN ETKİLERİ . Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni , 10 (2) , 91-105 . Retrieved from https://dergipark.org.tr/tr/pub/ vetfarmatoksbulten/issue/47597/589723. google scholar
  • Aguilar, J. C., & Rodriguez, E. G. (2007). Vaccine adjuvants revisited. Vaccine, 25(19), 3752-3762. do-i:10.1016/j.vaccine.2007.01.111 google scholar
  • Apostolico, J. D., Lunardelli, V. A. S., Coirada, F. C., Boscardin, S. B., & Rosa, D. S. (2016). Adjuvants: Classification, Modus Operandi, and Licensing. JOURNAL OF IMMUNOLOGY RESEARCH, 2016. doi:10.1155/2016/1459394 google scholar
  • Belkacem, N., Serafini, N., Wheeler, R., Derrien, M., Boucinha, L., Couesnon, A., . . . Bourdet-Sicard, R. (2017). Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS One, 12(9), e0184976. doi:10.1371/journal.pone.0184976 google scholar
  • Bousquet, J., Anto, J. M., Czarlewski, W., Haahtela, T., Fonseca, S. C., Iaccarino, G., . . . Zuberbier, T. (2021). Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy, 76(3), 735-750. doi:10.1111/all.14549 google scholar
  • Chac, D., Bhuiyan, T. R., Saha, A., Alam, M. M., Salma, U., Jahan, N., . . . Weil, A. A. (2021). Gut Microbiota and Development of Vibrio cholerae-Specific Long-Term Memory B Cells in Adults after Whole-Cell Killed Oral Cholera Vaccine. Infect Immun, 89(9), e0021721. doi:10.1128/iai.00217-21 google scholar
  • Chapman, T. J., Pham, M., Bajorski, P., & Pichichero, M. E. (2022). Antibiotic Use and Vaccine Antibody Levels. Pediatrics, 149(5). doi:10.1542/peds.2021-052061 google scholar
  • Cheung, K. S., Lam, L. K., Zhang, R., Ooi, P. H., Tan, J. T., To, W. P., . . . Leung, W. K. (2022). Association between Recent Usage of Antibiotics and Immunogenicity within Six Months after COVID-19 Vaccination. Vaccines (Basel), 10(7). doi:10.3390/vaccines10071122 google scholar
  • Christensen, D. (2016). Vaccine adjuvants: Why and how. Hum Vaccin Immunother, 12(10), 2709-2711. doi:10 .1080/21645515.2016.1219003 google scholar
  • Ciabattini, A., Olivieri, R., Lazzeri, E., & Medaglini, D. (2019). Role of the Microbiota in the Modulation of Vaccine Immune Responses. Front Microbiol, 10, 1305. doi:10.3389/fmicb.2019.01305 google scholar
  • Correa-Oliveira, R., Fachi, J. L., Vieira, A., Sato, F. T., & Vinolo, M. A. (2016). Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology, 5(4), e73. doi:10.1038/cti.2016.17 google scholar
  • Costagliola, G., Spada, E., Comberiati, P., & Peroni, D. G. (2021). Could nutritional supplements act as thera-peutic adjuvants in COVID-19? Ital J Pediatr, 47(1), 32. doi:10.1186/s13052-021-00990-0 google scholar
  • Demidowich, A. P., Levine, J. A., Apps, R., Cheung, F. K., Chen, J., Fantoni, G., . . . Yanovski, J. A. (2020). Colchicine’s effects on metabolic and inflammatory molecules in adults with obesity and metabolic synd-rome: results from a pilot randomized controlled trial. Int J Obes (Lond), 44(8), 1793-1799. doi:10.1038/ s41366-020-0598-3 google scholar
  • Duthie, M. S., Windish, H. P., Fox, C. B., & Reed, S. G. (2011). Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev, 239(1), 178-196. doi:10.1111/j.1600-065X.2010.00978.x google scholar
  • Eloe-Fadrosh, E. A., McArthur, M. A., Seekatz, A. M., Drabek, E. F., Rasko, D. A., Sztein, M. B., & Fraser, C. M. (2013). Impact of oral typhoid vaccination on the human gut microbiota and correlations with s. Typ-hi-specific immunological responses. PLoS One, 8(4), e62026. doi:10.1371/journal.pone.0062026 google scholar
  • Fix, J., Chandrashekhar, K., Perez, J., Bucardo, F., Hudgens, M. G., Yuan, L., . . . Becker-Dreps, S. (2020). Association between Gut Microbiome Composition and Rotavirus Vaccine Response among Nicaraguan Infants. Am J Trop Med Hyg, 102(1), 213-219. doi:10.4269/ajtmh.19-0355 google scholar
  • Grassly, N. C., Praharaj, I., Babji, S., Kaliappan, S. P., Giri, S., Venugopal, S., . . . Kang, G. (2016). The effect of azithromycin on the immunogenicity of oral poliovirus vaccine: a double-blind randomised pla-cebo-controlled trial in seronegative Indian infants. Lancet Infect Dis, 16(8), 905-914. doi:10.1016/s1473-3099(16)30023-8 google scholar
  • Guerrero Manriquez, G. G., & Tuero, I. (2021). Adjuvants: friends in vaccine formulations against infectious diseases. Hum Vaccin Immunother, 17(10), 3539-3550. doi:10.1080/21645515.2021.1934354 google scholar
  • Hagan, T., Cortese, M., Rouphael, N., Boudreau, C., Linde, C., Maddur, M. S., . . . Pulendran, B. (2019). Antibio-tics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell, 178(6), 1313-1328. e1313. doi:10.1016/j.cell.2019.08.010 google scholar
  • Hajam, I. A., Dar, P. A., Won, G., & Lee, J. H. (2017). Bacterial ghosts as adjuvants: mechanisms and potential. Vet Res, 48(1), 37. doi:10.1186/s13567-017-0442-5 google scholar
  • Harris, V. C., Armah, G., Fuentes, S., Korpela, K. E., Parashar, U., Victor, J. C., . . . de Vos, W. M. (2017). Sig-nificant Correlation Between the Infant Gut Microbiome and Rotavirus Vaccine Response in Rural Ghana. J Infect Dis, 215(1), 34-41. doi:10.1093/infdis/jiw518 google scholar
  • Hong, S. H. (2023). Influence of Microbiota on Vaccine Effectiveness: “Is the Microbiota the Key to Vaccine-in-duced Responses?”. J Microbiol, 61(5), 483-494. doi:10.1007/s12275-023-00044-6 google scholar
  • Huang, B., Wang, J., & Li, L. (2023). Correction: Recent five-year progress in the impact of gut microbiota on vaccination and possible mechanisms. Gut Pathog, 15(1), 34. doi:10.1186/s13099-023-00560-1 google scholar
  • Huda, M. N., Ahmad, S. M., Alam, M. J., Khanam, A., Kalanetra, K. M., Taft, D. H., . . . Stephensen, C. B. (2019). Bifidobacterium Abundance in Early Infancy and Vaccine Response at 2 Years of Age. Pediatrics, 143(2). doi:10.1542/peds.2018-1489 google scholar
  • Huda, M. N., Lewis, Z., Kalanetra, K. M., Rashid, M., Ahmad, S. M., Raqib, R., . . . Stephensen, C. B. (2014). Stool microbiota and vaccine responses of infants. Pediatrics, 134(2), e362-372. doi:10.1542/peds.2013-3937 google scholar
  • Isolauri, E., Joensuu, J., Suomalainen, H., Luomala, M., & Vesikari, T. (1995). Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine, 13(3), 310-312. do-i:10.1016/0264-410x(95)93319-5 google scholar
  • Jia, L., Weng, S., Wu, J., Tian, X., Zhang, Y., Wang, X., . . . Wan, Y. (2022). Preexisting antibodies targeting SARS-CoV-2 S2 cross-react with commensal gut bacteria and impact COVID-19 vaccine induced immunity. Gut Microbes, 14(1), 2117503. doi:10.1080/19490976.2022.2117503 google scholar
  • Kim, M., Qie, Y., Park, J., & Kim, C. H. (2016). Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe, 20(2), 202-214. doi:10.1016/j.chom.2016.07.001 google scholar
  • Kukkonen, K., Nieminen, T., Poussa, T., Savilahti, E., & Kuitunen, M. (2006). Effect of probiotics on vaccine antibody responses in infancy--a randomized placebo-controlled double-blind trial. Pediatr Allergy Immu-nol, 17(6), 416-421. doi:10.1111/j.1399-3038.2006.00420.x google scholar
  • Lehtoranta, L., Latvala, S., & Lehtinen, M. J. (2020). Role of Probiotics in Stimulating the Immune System in Viral Respiratory Tract Infections: A Narrative Review. Nutrients, 12(10). doi:10.3390/nu12103163 google scholar
  • Littman, D. R. (2018). Do the Microbiota Influence Vaccines and Protective Immunity to Pathogens? If So, Is There Potential for Efficacious Microbiota-Based Vaccines? Cold Spring Harb Perspect Biol, 10(2). doi:10.1101/cshperspect.a029355 google scholar
  • Lynn, D. J., Benson, S. C., Lynn, M. A., & Pulendran, B. (2022). Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nat Rev Immunol, 22(1), 33-46. doi:10.1038/ s41577-021-00554-7 google scholar
  • Macpherson, A. J. (2018). Do the Microbiota Influence Vaccines and Protective Immunity to Pathogens? Issues of Sovereignty, Federalism, and Points-Testing in the Prokaryotic and Eukaryotic Spaces of the Host-Mic-robial Superorganism. Cold Spring Harb Perspect Biol, 10(2). doi:10.1101/cshperspect.a029363 google scholar
  • Matsuda, F., Chowdhury, M. I., Saha, A., Asahara, T., Nomoto, K., Tarique, A. A., . . . Qadri, F. (2011). Eva-luation of a probiotics, Bifidobacterium breve BBG-01, for enhancement of immunogenicity of an oral inactivated cholera vaccine and safety: a randomized, double-blind, placebo-controlled trial in Bangladeshi children under 5 years of age. Vaccine, 29(10), 1855-1858. doi:10.1016/j.vaccine.2010.12.133 google scholar
  • Mullie, C., Yazourh, A., Thibault, H., Odou, M. F., Singer, E., Kalach, N., . . . Romond, M. B. (2004). Increased poliovirus-specific intestinal antibody response coincides with promotion of Bifidobacterium longum-in-fantis and Bifidobacterium breve in infants: a randomized, double-blind, placebo-controlled trial. Pediatr Res, 56(5), 791-795. doi:10.1203/01.Pdr.0000141955.47550.A0 google scholar
  • Ng, S. C., Peng, Y., Zhang, L., Mok, C. K., Zhao, S., Li, A., . . . Tun, H. M. (2022). Gut microbiota composi-tion is associated with SARS-CoV-2 vaccine immunogenicity and adverse events. Gut, 71(6), 1106-1116. doi:10.1136/gutjnl-2021-326563 google scholar
  • Oh, J. Z., Ravindran, R., Chassaing, B., Carvalho, F. A., Maddur, M. S., Bower, M., . . . Pulendran, B. (2014). TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vacci-nation. Immunity, 41(3), 478-492. doi:10.1016/j.immuni.2014.08.009 google scholar
  • Park, J., Kim, M., Kang, S. G., Jannasch, A. H., Cooper, B., Patterson, J., & Kim, C. H. (2015). Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol, 8(1), 80-93. doi:10.1038/mi.2014.44 google scholar
  • Perez, N., lannicelli, J. C., Girard-Bosch, C., Gonzalez, S., Varea, A., Disalvo, L., . . . Cravero, R. (2010). Effect of probiotic supplementation on immunoglobulins, isoagglutinins and antibody response in children of low socio-economic status. Eur J Nutr, 49(3), 173-179. doi:10.1007/s00394-009-0063-5 google scholar
  • Robertson, R. C., Church, J. A., Edens, T. J., Mutasa, K., Min Geum, H., Baharmand, I., . . . Manges, A. R. (2021). The fecal microbiome and rotavirus vaccine immunogenicity in rural Zimbabwean infants. Vaccine, 39(38), 5391-5400. doi:10.1016/j.vaccine.2021.07.076 google scholar
  • Romani, L., Del Chierico, F., Macari, G., Pane, S., Ristori, M. V., Guarrasi, V., . . . Putignani, L. (2022). The Relationship Between Pediatric Gut Microbiota and SARS-CoV-2 Infection. Front Cell Infect Microbiol, 12, 908492. doi:10.3389/fcimb.2022.908492 google scholar
  • Sanchez, H. N., Moroney, J. B., Gan, H., Shen, T., Im, J. L., Li, T., . . . Casali, P. (2020). B cell-intrinsic epige-netic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun, 11(1), 60. doi:10.1038/s41467-019-13603-6 google scholar
  • Silva, F., Enaud, R., Creissen, E., Henao-Tamayo, M., Delhaes, L., & Izzo, A. (2022). Mouse Subcutaneous BCG Vaccination and Mycobacterium tuberculosis Infection Alter the Lung and Gut Microbiota. Microbiol Spectr, 10(3), e0169321. doi:10.1128/spectrum.01693-21 google scholar
  • Soh, S. E., Ong, D. Q., Gerez, I., Zhang, X., Chollate, P., Shek, L. P., . . . Aw, M. (2010). Effect of probiotic supplementation in the first 6 months of life on specific antibody responses to infant Hepatitis B vaccination. Vaccine, 28(14), 2577-2579. doi:10.1016/j.vaccine.2010.01.020 google scholar
  • Strazar, M., Mourits, V. P., Koeken, V., de Bree, L. C. J., Moorlag, S., Joosten, L. A. B., . . . Xavier, R. J. (2021). The influence of the gut microbiome on BCG-induced trained immunity. Genome Biol, 22(1), 275. doi:10.1186/s13059-021-02482-0 google scholar
  • Taylor, A. L., Hale, J., Wiltschut, J., Lehmann, H., Dunstan, J. A., & Prescott, S. L. (2006). Effects of probiotic supplementation for the first 6 months of life on allergen- and vaccine-specific immune responses. Clin Exp Allergy, 36(10), 1227-1235. doi:10.1111/j.1365-2222.2006.02553.x google scholar
  • Wang, B., Zhang, L., Wang, Y., Dai, T., Qin, Z., Zhou, F., & Zhang, L. (2022). Alterations in microbiota of pa-tients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduct Target Ther, 7(1), 143. doi:10.1038/s41392-022-00986-0 google scholar
  • West, C. E., Gothefors, L., Granström, M., Kayhty, H., Hammarström, M. L., & Hernell, O. (2008). Effects of feeding probiotics during weaning on infections and antibody responses to diphtheria, tetanus and Hib vaccines. Pediatr Allergy Immunol, 19(1), 53-60. doi:10.1111/j.1399-3038.2007.00583.x google scholar
  • Wu, B. B., Yang, Y., Xu, X., & Wang, W. P. (2016). Effects of Bifidobacterium supplementation on intestinal microbiota composition and the immune response in healthy infants. World J Pediatr, 12(2), 177-182. doi:10.1007/s12519-015-0025-3 google scholar
  • Yang, W., Yu, T., Huang, X., Bilotta, A. J., Xu, L., Lu, Y., . . . Cong, Y. (2020). Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun, 11(1), 4457. doi:10.1038/s41467-020-18262-6 google scholar
  • Yeoh, Y. K., Zuo, T., Lui, G. C., Zhang, F., Liu, Q., Li, A. Y., . . . Ng, S. C. (2021). Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 70(4), 698706. doi:10.1136/gutjnl-2020-323020 google scholar
  • Youngster, I., Kozer, E., Lazarovitch, Z., Broide, E., & Goldman, M. (2011). Probiotics and the immunological response to infant vaccinations: a prospective, placebo controlled pilot study. Arch Dis Child, 96(4), 345349. doi:10.1136/adc.2010.197459 google scholar
  • Zhao, T., Li, J., Fu, Y., Ye, H., Liu, X., Li, G., . . . Yang, J. (2020). Influence of gut microbiota on mucosal IgA antibody response to the polio vaccine. NPJ Vaccines, 5(1), 47. doi:10.1038/s41541-020-0194-5 google scholar
  • Zimmermann, P., & Curtis, N. (2018). The influence of probiotics on vaccine responses - A systematic review. Vaccine, 36(2), 207-213. doi:10.1016/j.vaccine.2017.08.069 google scholar
  • Zimmermann, P., & Curtis, N. (2019). Factors That Influence the Immune Response to Vaccination. Clin Mic-robiol Rev, 32(2). doi:10.1128/cmr.00084-18 google scholar
  • Zitvogel, L., & Kroemer, G. (2021). Cross-reactivity between cancer and microbial antigens. Oncoimmunology, 10(1), 1877416. doi:10.1080/2162402x.2021.1877416 google scholar
  • Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A. Y. L., Zhan, H., . . . Ng, S. C. (2020). Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 159(3), 944-955. e948. doi:10.1053/j.gastro.2020.05.048 google scholar


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.