BÖLÜM


DOI :10.26650/B/LS32LS24.2024.005.013   IUP :10.26650/B/LS32LS24.2024.005.013    Tam Metin (PDF)

Recirculating Aquaculture Systems

Deniz Devrim Tosun

This chapter aims to provide a comprehensive overview of the recirculating aquaculture technology and its applications in the aquaculture industry with a focus on Turkish aquaculture. The purpose and scope of this chapter include the following:

  • Definition and background: A clear definition of RAS and an overview of the history and development of the technology.
  • Components and design: A description of the key components of RAS and an explanation of how RAS systems are designed and constructed.
  • Advantages and disadvantages: A discussion of the key advantages and disadvantages of RAS, including environmental sustainability, cost-effectiveness, improved yields, and the reduced risk of disease and parasitism.
  • Future directions: A discussion of the future directions of RAS, including the potential for further technological development and the continued growth and acceptance of RAS as a sustainable and environmentally friendly way of growing aquatic species.
  • RAS in Türkiye


Referanslar

  • Ahmed, N., Thompson, S., & Glaser, M. (2019). Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environmental management, 63, 159-172. google scholar
  • Aich, N., Nama, S., Biswal, A., & Paul, T. (2020). A review on recirculating aquaculture systems: Challenges and opportunities for sustainable aquaculture. Innovative Farming, 5(1), 017-024.. google scholar
  • Al-Hussaini, K., Zainol, S. M., Ahmed, R. B., & Daud, S. (2018). IoT monitoring and automation data acquisition for recirculating aquaculture system using fog computing. J. Comput. Hardw. Eng, 1. google scholar
  • Andrei, S., Pop, A., Gageanu, I., Laza, E., Cujbescu, D., Voicea, I., & Vladut, V. (2016). Aspects on mechanical filtering in aquaculture systems. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 46(2), 296-305. google scholar
  • Badiola, M., Basurko, O. C., Piedrahita, R., Hundley, P., & Mendiola, D. (2018). Energy use in recirculating aquaculture systems (RAS): a review. Aquacultural engineering, 81, 57-70. google scholar
  • Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering, 51, 26-35. google scholar
  • Blancheton, J. P. (2000). Developments in recirculation systems for Mediterranean fish species. Aquacultural engineering, 22(1-2), 17-31. google scholar
  • Bregnballe, J. 2022. A guide to recirculation aquaculture - An introduction to the new environmentally friendly and highly productive closed fish farming systems. Rome. FAO and Eurofish International Organisation. https://doi.org/10.4060/cc2390en google scholar
  • Bush, S. R., Van Zwieten, P. A., Visser, L., van Dijk, H., Bosma, R., de Boer, W. F., & Verdegem, M. (2010). Scenarios for resilient shrimp aquaculture in tropical coastal areas. Ecology and society, 15(2). google scholar
  • De Silva, S. S., Nguyen, T. T., Turchini, G. M., Amarasinghe, U. S., & Abery, N. W. (2009). Alien species in aquaculture and biodiversity: a paradox in food production. Ambio: a journal of the human environ-ment, 38(1), 24-28. google scholar
  • De Silva, S. S., & Soto, D. (2009). Climate change and aquaculture: potential impacts, adaptation and mitiga-tion. Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper, 530, 151-212. google scholar
  • Dolan, E., Murphy, N., & O’Hehir, M. (2013). Factors influencing optimal micro-screen drum filter selection for recirculating aquaculture systems. Aquacultural Engineering, 56, 42-50. google scholar
  • Ebeling, J. M. (2000). Engineering aspects of recirculating aquaculture systems. Marine Technology Society. Marine Technology Society Journal, 34(1), 68. google scholar
  • Ebeling, J. M., & Timmons, M. B. (2010). Recirculating aquaculture. Ithaca, NY, USA: Cayuga Aqua Ventures. google scholar
  • Ebeling, J. M., & Timmons, M. B. (2012). Recirculating aquaculture systems. Aquaculture production systems, 245-277. google scholar
  • Eding, E. H., Kamstra, A., Verreth, J. A. J., Huisman, E. A., & Klapwijk, A. (2006). Design and operation of nitrifying trickling filters in recirculating aquaculture: a review. Aquacultural engineering, 34(3), 234-260. google scholar
  • Espinal, C. A., & Matulic, D. (2019). Recirculating aquaculture technologies. Aquaponics food production systems, 35-76. google scholar
  • Ford, J. S., & Myers, R. A. (2008). A global assessment of salmon aquaculture impacts on wild salmonids. PLoS biology, 6(2), e33. google scholar
  • Fowler, P., Baird, D., Bucklin, R., Yerlan, S., Watson, C., & Chapman, F. (1994). Microcontrollers in recirculating aquaculture systems. University of Florida, EES-326. google scholar
  • Goldburg, R. J., Elliott, M. S., Naylor, R. L., & Pew Oceans Commission. (2001). Marine aquaculture in the United States: environmental impacts and policy options. google scholar
  • Guerdat, T. C., Losordo, T. M., Classen, J. J., Osborne, J. A., & DeLong, D. P. (2010). An evaluation of com-mercially available biological filters for recirculating aquaculture systems. Aquacultural engineering, 42(1), 38-49. google scholar
  • Guerdat, T. C., Losordo, T. M., Classen, J. J., Osborne, J. A., & DeLong, D. (2011). Evaluating the effects of organic carbon on biological filtration performance in a large scale recirculating aquaculture system. Aqu-acultural engineering, 44(1), 10-18. google scholar
  • Gullian, M., Espinosa-Faller, F. J., Nunez, A., & Lopez-Barahona, N. (2012). Effect of turbidity on the ultravi-olet disinfection performance in recirculating aquaculture systems with low water exchange. Aquaculture Research, 43(4), 595-606. google scholar
  • Gutierrez-Wing, M. T., & Malone, R. F. (2006). Biological filters in aquaculture: trends and research directions for freshwater and marine applications. Aquacultural engineering, 34(3), 163-171. google scholar
  • Gonçalves, A. A., & Gagnon, G. A. (2011). Ozone application in recirculating aquaculture system: an over-view. Ozone: Science & Engineering, 33(5), 345-367. google scholar
  • Hall, S. J. (2011). Blue frontiers: managing the environmental costs of aquaculture. WorldFish. google scholar
  • Hamilton, S. (2013). Assessing the role of commercial aquaculture in displacing mangrove forest. Bulletin of Marine Science, 89(2), 585-601. google scholar
  • Helfrich, L. A., & Libey, G. S. (1991). Fish farming in recirculating aquaculture systems (RAS). Virginia Co-operative Extension. google scholar
  • Lebel, L., Tri, N. H., Saengnoree, A., Pasong, S., & Buatama, U. (2002). Industrial transformation and shrimp aquaculture in Thailand and Vietnam: pathways to ecological, social, and economic sustainability?. AMBIO: A Journal of the Human Environment, 31(4), 311-323. google scholar
  • Leonard, N., Blancheton, J. P., & Guiraud, J. P. (2000). Populations of heterotrophic bacteria in an experimental recirculating aquaculture system. Aquacultural Engineering, 22(1-2), 109-120. google scholar
  • Losordo, T. M., Masser, M. P., & Rakocy, J. (2000). Recirculating aquaculture tank production systems. Southern Regional Aquaculture Center. google scholar
  • Losordo, T. M., Hobbs, A. O., & DeLong, D. P. (2000). The design and operational characteristics of the CP&L/ EPRI fish barn: a demonstration of recirculating aquaculture technology. Aquacultural Engineering, 22(1-2), 3-16. google scholar
  • Loyless, J. C., & Malone, R. F. (1998). Evaluation of air-lift pump capabilities for water delivery, aeration, and degasification for application to recirculating aquaculture systems. Aquacultural engineering, 18(2), 117-133. google scholar
  • Malone, R. (2013). Recirculating aquaculture tank production systems. USDA, Southern Regional Aquaculture Center: Stoneville, MS, USA, 12. google scholar
  • Malone, R. F., & Pfeiffer, T. J. (2006). Rating fixed film nitrifying biofilters used in recirculating aquaculture systems. Aquacultural engineering, 34(3), 389-402. google scholar
  • Martins, C. I. M., Eding, E. H., Verdegem, M. C., Heinsbroek, L. T., Schneider, O., Blancheton, J. P., ... & Ver-reth, J. A. J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural engineering, 43(3), 83-93. google scholar
  • Masser, M. P., Rakocy, J., & Losordo, T. M. (1999). Recirculating aquaculture tank production systems. Mana-gement of recirculating systems. SRAC Publication, 452. google scholar
  • McMillan, J. D., Wheaton, F. W., Hochheimer, J. N., & Soares, J. (2003). Pumping effect on particle sizes in a recirculating aquaculture system. Aquacultural Engineering, 27(1), 53-59. google scholar
  • Midilli, A., Kucuk, H., & Dincer, I. (2012). Environmental and sustainability aspects of a recirculating aquacul-ture system. Environmental Progress & Sustainable Energy, 31(4), 604-611. google scholar
  • Murray, F., Bostock, J., & Fletcher, D. (2014). Review of recirculation aquaculture system technologies and their commercial application. google scholar
  • Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C., Clay, J., ... & Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790), 1017-1024. google scholar
  • Neissi, A., Rafiee, G., Rahimi, S., Farahmand, H., Pandit, S., & Mijakovic, I. (2022). Enriched microbial com-munities for ammonium and nitrite removal from recirculating aquaculture systems. Chemosphere, 295, 133811. google scholar
  • Ni, Q., & Zhang, Y. (2007). Suspended solids removal technology in recirculating aquaculture systems. Fishery Modernization, 34, 7-10. google scholar
  • Ngoc, P. T. A., Meuwissen, M. P., Cong Tru, L., Bosma, R. H., Verreth, J., & Lansink, A. O. (2016). Economic feasibility of recirculating aquaculture systems in pangasius farming. Aquaculture Economics & Manage-ment, 20(2), 185-200. google scholar
  • Ngoc, P. T. A., Meuwissen, M. P., Le, T. C., Bosma, R. H., Verreth, J., & Lansink, A. O. (2016). Adoption of recirculating aquaculture systems in large pangasius farms: A choice experiment. Aquaculture, 460, 90-97. google scholar
  • Paez-Osuna, F. (2001). The environmental impact of shrimp aquaculture: causes, effects, and mitigating alter-natives. Environmental Management, 28, 131-140. google scholar
  • Pedersen, L. F., Suhr, K. I., Dalsgaard, J., Pedersen, P. B., & Arvin, E. (2012). Effects of feed loading on nitrogen balances and fish performance in replicated recirculating aquaculture systems. Aquaculture, 338, 237-245. google scholar
  • Pfeiffer, T. J., Osborn, A., & Davis, M. (2008). Particle sieve analysis for determining solids removal efficiency of water treatment components in a recirculating aquaculture system. Aquacultural Engineering, 39(1), 24-29. google scholar
  • Ramli, N. M., Verreth, J. A. J., Yusoff, F. M., Nurulhuda, K., Nagao, N., & Verdegem, M. C. (2020). Integration of algae to improve nitrogenous waste management in recirculating aquaculture systems: A review. Frontiers in Bioengineering and Biotechnology, 8, 1004. google scholar
  • Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 20002012. Proceedings of the National Academy of Sciences, 113(2), 344-349. google scholar
  • Rurangwa, E., & Verdegem, M. C. (2015). Microorganisms in recirculating aquaculture systems and their ma-nagement. Reviews in aquaculture, 7(2), 117-130. google scholar
  • Schreier, H. J., Mirzoyan, N., & Saito, K. (2010). Microbial diversity of biological filters in recirculating aqua-culture systems. Current opinion in biotechnology, 21(3), 318-325. google scholar
  • Sharrer, M. J., Summerfelt, S. T., Bullock, G. L., Gleason, L. E., & Taeuber, J. (2005). Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system. Aquacultural Engineering, 33(2), 135-149. google scholar
  • Sharrer, M. J., Tal, Y., Ferrier, D., Hankins, J. A., & Summerfelt, S. T. (2007). Membrane biological reactor tre-atment of a saline backwash flow from a recirculating aquaculture system. Aquacultural engineering, 36(2), 159-176. google scholar
  • Sharrer, M. J., & Summerfelt, S. T. (2007). Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system. Aquacultural Engineering, 37(2), 180-191. google scholar
  • Sitek, A. J. (2020). Evaluating recirculating aquaculture system nutrient production (Master thesis, University of New Hampshire). google scholar
  • Steicke, C. R., Jegatheesan, V., & Zeng, C. (2009). Recirculating aquaculture systems-a review. Water and wastewater treatment technologies, 2, 149-179. google scholar
  • Suantika, G., Situmorang, M. L., Kurniawan, J. B., Pratiwi, S. A., Aditiawati, P., Astuti, D. I., & Simatupang, T. M. (2018). Development of a zero water discharge (ZWD) Recirculating aquaculture system (RAS) hybrid system for super intensive white shrimp (Litopenaeus vannamei) culture under low salinity conditions and its industrial trial in commercial shrimp urban farming in Gresik, East Java, Indonesia. Aquacultural engineering, 82, 12-24. google scholar
  • Summerfelt, S. T., Sharrer, M. J., Hollis, J., Gleason, L. E., & Summerfelt, S. R. (2004). Dissolved ozone destruction using ultraviolet irradiation in a recirculating salmonid culture system. Aquacultural Enginee-ring, 32(1), 209-223. google scholar
  • Sun, G., Liu, Y., Qiu, D., Yi, M., Li, X., & Li, Y. (2016). Effects of feeding rate and frequency on growth per-formance, digestion and nutrients balances of A tlantic salmon (S almo salar) in recirculating aquaculture systems (RAS). Aquaculture research, 47(1), 176-188. google scholar
  • Thomas, N., Lucas, R., Bunting, P., Hardy, A., Rosenqvist, A., & Simard, M. (2017). Distribution and drivers of global mangrove forest change, 1996-2010. PloS one, 12(6), e0179302. google scholar
  • Twarowska, J. G., Westerman, P. W., & Losordo, T. M. (1997). Water treatment and waste characterization evaluation of an intensive recirculating fish production system. Aquacultural engineering, 16(3), 133-147. google scholar
  • Van Rijn, J. (2013). Waste treatment in recirculating aquaculture systems. Aquacultural Engineering, 53, 49-56. google scholar
  • Wheaton, F. (2002, July). Recirculating aquaculture systems: an overview of waste management. In Proceedings of the 4th international conference on recirculating aquaculture, Roanoke. google scholar
  • Xiao, R., Wei, Y., An, D., Li, D., Ta, X., Wu, Y., & Ren, Q. (2019). A review on the research status and deve-lopment trend of equipment in water treatment processes of recirculating aquaculture systems. Reviews in Aquaculture, 11(3), 863-895. google scholar
  • Zhou, C., Xu, D., Lin, K., Sun, C., & Yang, X. (2018). Intelligent feeding control methods in aquaculture with an emphasis on fish: a review. Reviews in Aquaculture, 10(4), 975-993. google scholar


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.