Araştırma Makalesi


DOI :10.26650/EurJBiol.2024.1484519   IUP :10.26650/EurJBiol.2024.1484519    Tam Metin (PDF)

Biodegradation of Chlorpyrifos in Paddy Rice Soil in the Mekong Delta, Vietnam

Truong Quoc Tat

Objective: Chlorpyrifos (CP) is an organophosphate insecticide. High toxicity makes it a potential source of soil pollution when used in agriculture. This study aimed to assess the anaerobic digestion of CP, the diversity of chlorpyrifos-degrading bacteria in soil, and the mechanism of CP decomposition.

Materials and Methods: Four soil samples were collected from paddy rice fields in Vietnam to evaluate the degradation of CP by anaerobic bacteria. The experiment was conducted in 50 mL microcosms containing 30 mL mineral salt medium, 10 g soil, and 35 mg/kg CP. The concentration of CP was determined using an high performance liquid chromatography.The intermediate products of CP were identified using a gas chromatography–mass spectrometry.

Results: Our bacterial communities in the soil samples anaerobically degraded CP. The rate of CP degradation was doubled after increasing the bacterial density during incubation. The percentage of CP degradation within a 4-month incubation period was significantly higher in the two bacterial communities isolated from alluvial soil than in acid soil. Four bacterial communities were found to degrade CP through the anaerobic reduction of chloride. The intermediate products resulting from the decomposition of CP by these soil bacterial communities were identified as O, O-diethyl-3, 6-dichloro-2-pyridyl phosphorothioate; 3,5,6-trichloro2-pyridinol; O, O-diethyl-O (3,5,6-trichloro-2-pyridyl) phosphate. This shows the presence of the Chloroflexi bacterial phylum in the soil samples.

Conclusion: There is the presence of a group of anaerobic bacteria capable of decomposing CP in soil specialised in rice cultivation, opening up the potential to improve polluted soil by biological means.


PDF Görünüm

Referanslar

  • 1. Guardino X, Obiols J, Rosell MG, Farran A, Serra C. Determi-nation of chlorpyrifos in air, leaves and soil from a greenhouse by gas-chromatography with nitrogen-phosphorus detection, high performance liquid chromatography and capillary electrophore-sis. J Chromatogr A. 1998;823:91-96. google scholar
  • 2. Kale SP, Carvalho FP, Raghu K, Sherkhane PD, Pandit GG, Mo-han Rao A. Studies on degradation of 14C-chlorpyrifos in the marine environment. Chemosphere. 1999;39:969-976. google scholar
  • 3. Sundaram B, Rai SK, Ravendra N. Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates. Pestic Sci. 1999;55:1222-1228. google scholar
  • 4. Subhani A, Liano M, Huang CY, Xie ZM. Impact of some agro-nomic practices on paddy field soil health under varied ecological condition: Influence of soil moisture. Pedosphere. 2001;11:38-48. google scholar
  • 5. Wang LG, Jiang X, Wang F, Bian YR, Stephan F, Dieter M. Separation of chlorinated hydrocarbons and organophosphorus, pyrethroid pesticides by silicagel fractionation chromatography and their simultaneous determination by GC-MS. J Environ Sci. 2004;16:268-271. google scholar
  • 6. Wang LG, Jiang X, Yan DY. Comparison of two procedures for extraction and cleanup of organophosphorus and pyrethroid pes-ticides in sediment. Pedosphere. 2004;14:229-234. google scholar
  • 7. Pandey S, Singh DK. Total bacterial and fungal population af-ter chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere. 2004;55:197-205. google scholar
  • 8. Lal S, Lal R. Bioaccumulation, metabolism and effects of DDT, fenitrothion and chlorpyrifos on Saccharomyces cerevisiae. Arch Environ Contam Toxicol. 1987;16:753-757. google scholar
  • 9. Lal S, Saxena DM, Lal R. Uptake, metabolism and effects of DDT, fenitrothion and chlorpyrifos on Tetrahymena pyriformis. Pestic Sci. 1987a;21:181-191. google scholar
  • 10. Lal R. Bioconcentration and metabolism of DDT, fenitrothion and chlorpyrifos by the blue-green algae Anabaena sp. and Aulosira fertilissima. Environ Pollut. 1987b;46:187-196. google scholar
  • 11. Metcalf RL. A laboratory model ecosystem to evaluate "com-pounds" producing biological magnification. Essays Toxicol. 1974;5:17-28. google scholar
  • 12. Spacie A, Hamelink JL. Bioaccumulation. In: Rand PM, Petro-celli SR (Eds.), Fundamentals of aquatic toxicology: Methods and applications. Hemisphere Publishers, NY, 1985:497-534. google scholar
  • 13. Gebremariam SY. Mineralization, sorption and desorption of chlorpyrifos in aquatic sediments and soils. Doctor of Philoso-phy, Washington State University. United States. 2012;198. google scholar
  • 14. Fenske RA, Lu C, Barr D, Needham L. Children’s exposure to chlorpyrifos and parathion in an agricultural community in cen-tral Washington State. Environ Health Perspect. 2002;110(5):549-553. google scholar
  • 15. Jagnow G, Haider K, Ellwardt PC. Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Arch Microbiol. 1977;115(3):285-292. google scholar
  • 16. Bunge M., Adrian L, Kraus A, et al. Reductive dehalogena-tion of chlorinated dioxins by an anaerobic bacterium. Nature. 2003;421:357-360. google scholar
  • 17. Duong V, Tran, DV, Nguyen NK, Haggblom MM, Springael D. Diversity of dibenzofuran-degrading bacteria isolated from dioxin-polluted areas in Vietnam. Abstract Q-008. ASM. 2009;109:17-21. google scholar
  • 18. Christoph EH, Umlauf GCK, Bidoglio G. “PCDD/Fs and Dioxin-like PCBs in Soils after the Flooding of River Elbe and Mulde in 2002". DIOXIN 2004-24th Intern. Symposium on Halogenated Environmental Organic Pollutants and POPs, 6-10 September 2004. Berlin. google scholar
  • 19. Park JW, Krumins V, Kjellerup B, et al. The effect of co-substrate activation on indigenous and bioaugmented PCB dechlorinating bacterial communities in sediment microcosms. Appl Microbiol Biotechnol. 2011;89(6):2005-2017. google scholar
  • 20. Lane DJ. 16S/23S rRNA Sequencing. In: Stackebrandt, E., Good-fellow, M. (Eds.), Nucleic Acid Techniques in Bacterial System-atics. Wiley, Chichester, New York, 1991;115-175. google scholar
  • 21. Muyzer G, Dewaal EC, Uiterlinden AG. Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis of polymerase chain reaction-ampli fied genes-coding for 16S ribosomal-RNA. Appl Environ Microbiol. 1993;59:695-700. google scholar
  • 22. McCarty PL. Breathing with chlorinated solvents. Sci. 1997;276(5318):1521-1532. google scholar
  • 23. Singh BK, Walker A, Morgan JAW, Wright DJ. Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated Soils. Appl Environ Microbiol. 2004;70:4855-4863. google scholar
  • 24. Yang L, Zhao Y, Zhan B, Yang CH, Zhang X. Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett. 2005;251(1):67-73. google scholar
  • 25. Ghanem M, Orfi, Shamma M. Biodegration of Chlorpyrifos by Kepsiella sp. Isolated an active sluge sample of waste water Treat-ment plant in Damascus. Folia Microbiol. 2007;52(4):423-427. google scholar
  • 26. Anwar S, Liaquat F, Khan QM, Kalid ZM, Iqal S. Biodegra-dation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater. 2009;168(1):400-405. google scholar
  • 27. Maymo-Gatell X, Chien YT, Gossett JM, Zinder SH. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science. 1997;276(5318):1568-1579. google scholar
  • 28. Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Hagg-blom MM. Dehalococcoides ethenogenes Strain 195 Reduc-tively Dechlorinates Diverse Chlorinated Aromatic Pollutants. Environ Sci Technol. 2004;38(7):2075-2081. google scholar
  • 29. Adrian L, Hansen SK, Fung JM, Gorisch H, Zinder SH. Growth of Dehalococcoides strains with chlorophenols as electron accep-tors. Environ Sci Technol. 2007;41(7):2318-2323. google scholar
  • 30. Adrian L, Szewzyk U, Wecke J, Gorisch H. Bacterial dehalorespi-ration with chlorinated ben zenes. Nature. 2000;408(6812):580-583. google scholar
  • 31. Bunge M, Adrian L, Kraus A., et al., Reductive dehalogena-tion of chlorinated dioxins by an anaerobic bacterium. Nature. 2003;421(6921):357-360. google scholar
  • 32. Daniel A. Abramowicz. Aerobic and anaerobic biodegradation of PCBs: A review. Crit Rev Biotechnol. 1990;10(3):241-251. google scholar
  • 33. Savadogo PW, Ouattara AS, Sedogo MP, Traore S. Anaerobic biodegradation of Sumithion an organophosphorus insecticide used in Burkina Faso agriculture by acclimatized indigenous bac-teria. Pak J Biol Sci. 2007;10(11):1896-905. google scholar
  • 34. National Registration Authority (NRA). The NRA review of chlorpyrifos. NRA, Australia, 2000:80. google scholar
  • 35. Racke KD. Environmental fate of Chlorpyrifos. Rev Environ Contam Toxicol. 1993;131:1-151. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Tat, T.Q. (2024). Biodegradation of Chlorpyrifos in Paddy Rice Soil in the Mekong Delta, Vietnam. European Journal of Biology, 0(0), -. https://doi.org/10.26650/EurJBiol.2024.1484519


AMA

Tat T Q. Biodegradation of Chlorpyrifos in Paddy Rice Soil in the Mekong Delta, Vietnam. European Journal of Biology. 2024;0(0):-. https://doi.org/10.26650/EurJBiol.2024.1484519


ABNT

Tat, T.Q. Biodegradation of Chlorpyrifos in Paddy Rice Soil in the Mekong Delta, Vietnam. European Journal of Biology, [Publisher Location], v. 0, n. 0, p. -, 2024.


Chicago: Author-Date Style

Tat, Truong Quoc,. 2024. “Biodegradation of Chlorpyrifos in Paddy Rice Soil in the Mekong Delta, Vietnam.” European Journal of Biology 0, no. 0: -. https://doi.org/10.26650/EurJBiol.2024.1484519


Chicago: Humanities Style

Tat, Truong Quoc,. Biodegradation of Chlorpyrifos in Paddy Rice Soil in the Mekong Delta, Vietnam.” European Journal of Biology 0, no. 0 (Nov. 2024): -. https://doi.org/10.26650/EurJBiol.2024.1484519


Harvard: Australian Style

Tat, TQ 2024, 'Biodegradation of Chlorpyrifos in Paddy Rice Soil in the Mekong Delta, Vietnam', European Journal of Biology, vol. 0, no. 0, pp. -, viewed 22 Nov. 2024, https://doi.org/10.26650/EurJBiol.2024.1484519


Harvard: Author-Date Style

Tat, T.Q. (2024) ‘Biodegradation of Chlorpyrifos in Paddy Rice Soil in the Mekong Delta, Vietnam’, European Journal of Biology, 0(0), pp. -. https://doi.org/10.26650/EurJBiol.2024.1484519 (22 Nov. 2024).


MLA

Tat, Truong Quoc,. Biodegradation of Chlorpyrifos in Paddy Rice Soil in the Mekong Delta, Vietnam.” European Journal of Biology, vol. 0, no. 0, 2024, pp. -. [Database Container], https://doi.org/10.26650/EurJBiol.2024.1484519


Vancouver

Tat TQ. Biodegradation of Chlorpyrifos in Paddy Rice Soil in the Mekong Delta, Vietnam. European Journal of Biology [Internet]. 22 Nov. 2024 [cited 22 Nov. 2024];0(0):-. Available from: https://doi.org/10.26650/EurJBiol.2024.1484519 doi: 10.26650/EurJBiol.2024.1484519


ISNAD

Tat, TruongQuoc. Biodegradation of Chlorpyrifos in Paddy Rice Soil in the Mekong Delta, Vietnam”. European Journal of Biology 0/0 (Nov. 2024): -. https://doi.org/10.26650/EurJBiol.2024.1484519



ZAMAN ÇİZELGESİ


Gönderim15.05.2024
Kabul11.07.2024
Çevrimiçi Yayınlanma11.09.2024

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.