Araştırma Makalesi


DOI :10.26650/eor.20241338647   IUP :10.26650/eor.20241338647    Tam Metin (PDF)

İmplant destekli terminal zirkonya kantilever alt yapıların in vitro kırılma direnci

Tabark Shihab Al BayatiSaja Ali Muhsin

Amaç: Bu çalışma, implant destekli zirkonya alt yapuların üç farklı şekilli kantilever formunun in vitro kırılma yüklerini araştırmayı amaçlamaktadır.

Gereç ve Yöntem: Toplam 30 adet implant destekli zirkonya alt yapı (Aconia, Çin) CAD/CAM ile üretildi ve her biri 5 mm'lik distale uzanan farklı kantilever kesit tasarımına sahip üç gruba ayrıldı: Grup A'da kare, Grup B'de ise oval ve Grup C'de oval-kare şekilli numuneler hazırlandı. Numunelere dikey yükler uygulamak için evrensel test cihaı kullanıldı ve kırılma yükleri kaydedildi. İstatistiksel değerlendirmede varyans analizi ve Tukey post-hoc testleri uygulandı.

Bulgular: Grup B (587,8±112,2 N) ve Grup C'nin (591,3 ±81,3 N) ortalama kırılma yükleri arasında anlamlı bir fark yoktu, ancak her iki grup da Grup A'ya (893,8±145 N) kıyasla anlamlı derecede daha düşük kırık yükleri sergiledi (her biri için p<0,001).

Sonuç: Bu deneysel çalışma kapsamında, her biri distal dayanaktan 5 mm uzanan kare şekilli zirkonya implant destekli terminal kantileverlerin, oval ve köşeli alt yapılara kıyasla dikey yüklere karşı daha fazla direnç gösterme ihtimalinin daha yüksek olduğu sonucuna varılabilir. 

DOI :10.26650/eor.20241338647   IUP :10.26650/eor.20241338647    Tam Metin (PDF)

In vitro fracture resistance of implant-supported terminal zirconia cantilevered frameworks

Tabark Shihab Al BayatiSaja Ali Muhsin

Purpose: This study aims to investigate the in vitro fracture loads of three different terminal cantilever forms of implant-supported zirconia frameworks.

Materials and Methods: A total of 30 implant-supported zirconia frameworks (Aconia, China) were CAD/CAM-fabricated and divided into three groups, each with a distal abutment cantilever form design of 5mm: Group A had square cantilevers, Group B had oval cantilevers, and Group C had oval-square cantilevers. Universal testing machine was used to apply vertical loads to the samples, and the fracture loads were recorded. Variance analysis and Tukey's post-hoc tests were applied for statistical evaluation.

Results: There was no significant difference between the mean fracture loads of Group B (587.8±112.2 N) and Group C (591.3 ±81.3 N), but both of these groups exhibited significantly lower fracture loads compared to Group A (893.8±145 N, p<0.001 for each).

Conclusion: Within the scope of this experimental study, it can be concluded that implantsupported terminal square shaped cantilever zirconia frameworks, each measuring 5 mm from the distal abutment, are more likely to exhibit greater resistance to vertical loads compared to their oval and oval-square counterparts.


PDF Görünüm

Referanslar

  • 1. Norström Saarva, V.; Bjerkstig, G.; Örtorp, A.; Svanborg, P., A three-year retrospective study on survival of ceramic-veneered zirconia (Y-TZP) fixed dental prostheses performed in private practices. Int J Dent 2017; 2017. https://doi.org/10.1155/2017/9618306 google scholar
  • 2. De Andrade, G. S.; Kalman, L.; Giudice, R. L.; Adolfi, D.; Feilzer, A. J.; Tribst, J. P. M., Biomechanics of implant-supported restorations. Braz Dent Sci. 2023; 26. https://doi.org/10.4322/bds.2023.e3637 google scholar
  • 3. Tang, Y.; Yu, H.; Wang, J.; Qiu, L., Implant Survival and Complication Prevalence in Complete-Arch Implant-Supported Fixed Dental Prostheses: A Retrospective Study with a Mean Follow-up of 5 Years. Int J Oral Maxillofac Implants. 2023; 38. https://doi.org/10.11607/jomi.9808 google scholar
  • 4. D’Amico, C.; Bocchieri, S.; Sambataro, S.; Surace, G.; Stumpo, C.; Fiorillo, L., Occlusal load considerations in implant-supported fixed restorations. Prosthesis. 2020; 2:252-65. https://doi.org/10.3390/prosthesis2040023 google scholar
  • 5. Walter, L.; Greenstein, G., Utility of measuring anterior-posterior spread to determine distal cantilever length off a fixed implant-supported full-arch prosthesis: a review of the literature. J Am Dent Assoc. 2020;151:790-95. https://doi.org/10.1016/j.adaj.2020.06.016 google scholar
  • 6. Haroyan-Darbinyan, E.; Romeo-Rubio, M.; Del Rio-Highsmith, J.; Lynch, C. D.; Castillo-Oyagüe, R., Thermo-mechanical behavior of alternative material combinations for full-arch implant-supported hybrid prostheses with short cantilevers. J Dent. 2023; 132: 104470. https://doi.org/10.1016Zi .j dent.2023.104470 google scholar
  • 7. Alshamrani, A.; Alhotan, A.; Kelly, E.; Ellakwa, A., Mechanical and Biocompatibility Properties of 3D-Printed Dental Resin Reinforced with Glass Silica and Zirconia Nanoparticles: In Vitro Study. Polym. 2023; 15:2523. https://doi.org/10.3390/polym15112523 google scholar
  • 8. Branco, A. C.; Colaço, R.; Figueiredo-Pina, C. G.; Serro, A. P., Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review. Mater. 2023; 16:1860. https://doi.org/10.3390/ma16051860 google scholar
  • 9. Sola-Ruiz, M. F.; Leon-Martine, R.; Labaig-Rueda, C.; Selva-Otalaorrouchi, E.;Agustın-Panadero, R., Clinical outcomes of veneered zirconia anterior partial fixed dental prostheses: A 12-year prospective clinical trial. J Prosthet Dent. 2022; 127: 846-51. https://doi .org/ 10.1016/j .prosdent.2020.09.046 google scholar
  • 10. Liu, C.; Liao, Y.; Jiao, W.; Zhang, X.; Wang, N.; Yu, J.; Liu, Y. T.; Ding, B., High Toughness Combined with High Strength in Oxide Ceramic Nanofibers. Adv Mater. 2023. 2304401. https://doi.org/10.1002/adma.202304401 google scholar
  • 11. Zhang, Y.; Kelly, J. R., Dental ceramics for restoration and metal veneering. Dent Clin. 2017; 61:797-819. https://doi.org/10.1016/j.cden.2017.06.005 google scholar
  • 12. Abbas, M.; Ramesh, S.; Tasfy, S.; Lee, K. S.; Gul, M.; Aljaoni, B., Effect of sintering additives on the properties of alumina toughened zirconia (ATZ). MRS Commun. 2023; 19. https://doi.org/10.1557/s43579-023-00400-y google scholar
  • 13. Lancellotta, V.; Pagano, S.; Tagliaferri, L.; Piergentini, M.; Ricci, A.; Montecchiani, S.; Saldi, S.; Chierchini, S.; Cianetti, S.; Valentini, V., Individual 3-dimensional printed mold for treating hard palate carcinoma with brachytherapy: A clinical report. J Prosthet Dent. 2019; 121(4):690-93. https://doi.org/10.1016/j.prosdent.2018.06.016 google scholar
  • 14. Meirowitz, A.; Bitterman, Y.; Levy, S.; Mijiritsky, E.; Dolev, E., An in vitro evaluation of marginal fit zirconia crowns fabricated by a CAD-CAM dental laboratory and a milling center. BMC Oral Health. 2019; 19:1-6. https://doi.org/10.1186/s12903-019-0810-9 google scholar
  • 15. Reuss, J. M.; Reuss, D.; Rutten, L.; Mateo, B.; Vilaboa, B. R.; Vilaboa, D. R., Facially Driven Rehabilitation of a Cleft Lip and Palate Patient with an Implant-Supported Complete Fixed Dental Prosthesis: Outcome of a Multidisciplinary Approach. Int J Prosthodont. 2023; 36. https://doi.org/10.11607/ijp.7622 google scholar
  • 16. Shokry, T. E., Evaluation of Fracture Resistance of Long Span Implant Supported Fixed Dental Prostheses Fabricated from Different CAD/CAM Materials. Al-Azhar J Dent Sci. 2023; 26:15-25. https://doi.org/10.21608/ajdsm.2022.115225.1286 google scholar
  • 17. Hu, M.-L.; Lin, H.; Zhang, Y.-D.; Han, J.-M., Comparison of technical, biological, and esthetic parameters of ceramic and metal-ceramic implant-supported fixed dental prostheses: A systematic review and meta-analysis. J Prosthet Dent. 2020; 124:26-35. e2. https://doi.org/10.1016Zj.prosdent.2019.07.008 google scholar
  • 18. Yin, S.; Cizek, J.; Chen, C.; Jenkins, R.; O'Donnell, G.; Lupoi, R., Metallurgical bonding between metal matrix and core-shelled reinforcements in cold sprayed composite coating. Scr Mater. 2020; 177:49-53. https://doi.org/10.3390/ma12142252 google scholar
  • 19. Budala, D. G.; Lupu, C. I.; Vasluianu, R. I.; loanid, N.; Butnaru, O. M.; Baciu, E.-R., A Contemporary Review of Clinical Factors Involved in Speech-Perspectives from a Prosthodontist Point of View. Medicina. 2023; 59:1322. https://doi.org/10.3390/medicina59071322 google scholar
  • 20. Dorado, S.; Arias, A.; Jimenez-Octavio, J. R., Biomechanical Modelling for Tooth Survival Studies: Mechanical Properties, Loads and Boundary Conditions—A Narrative Review. Mater. 2022; 15:7852. https://doi.org/10.3390/ma15217852 google scholar
  • 21. Matta, R. E.; Eitner, S.; Stelzer, S. P.; Reich, S.; Wichmann, M.; Berger, L., Ten-year clinical performance of zirconia posterior fixed partial dentures. J Oral Rehabil. 2022; 49:71-80. https://doi.org/10.1111/joor.13276/v1/review1 google scholar
  • 22. Horsch, L.; Kronsteiner, D.; Rammelsberg, P., Survival and complications of implant-supported cantilever fixed dental prostheses with zirconia and metal frameworks: A retrospective cohort study. Clin Implant Dent Relat Res. 2022. https://doi.org/10.1111/cid.13125 google scholar
  • 23. Karasan, D.; Canay, S.; Sailer, I.; Att, W., Zirconia Cantilever Fixed Dental Prostheses Supported by One or Two Implants: An In Vitro Study on Mechanical Stability and Technical Outcomes. Int J Oral Maxillofac Implants. 2022; 37. https://doi.org/10.11607/jomi.8953 google scholar
  • 24. Takaba, M.; Tanaka, S.; Ishiura, Y.; Baba, K., Implant-supported fixed dental prostheses with CAD/CAM-fabricated porcelain crown and zirconia-based framework. J Prosthodont on Complex Restorations. 2016; 225-31. https://doi.org/10.1111/jopr.12001 google scholar
  • 25. D'Albis, G.; D'Albis, V.; Susca, B.; Palma, M.; Al Krenawi, N., Implant-supported zirconia fixed partial dentures cantilevered in the lateral-posterior area: A 4-year clinical results. J Dent Res Dent Clin Dent Prospects. 2022; 16: 258 63. https://doi.org/10.34172/joddd.2022.041 google scholar
  • 26. Lee, B.; Oh, K. C.; Haam, D.; Lee, J.-H.; Moon, H.-S., Evaluation of the fit of zirconia copings fabricated by direct and indirect digital scanning procedures. J Prosthet Dent. 2018; 120: 225-31. https://doi.org/10.1016Zj.prosdent.2017.08.003 google scholar
  • 27. Alao, A.-R.; Stoll, R.; Zhang, Y.; Yin, L., Influence of CAD/CAM milling, sintering and surface treatments on the fatigue behavior of lithium disilicate glass ceramic. J Mech Behav Biomed Mater. 2021; 113: 104133. https://doi.Org/10.1016/j.jmbbm.2020.104133 google scholar
  • 28. Sancho-Puchades, M.; Crameri, D.; Özcan, M.; Sailer, I.; Jung, R.; Hammerle, C.; Thoma, D., The influence of the emergence profile on the amount of undetected cement excess after delivery of cement-retained implant reconstructions. Clin Oral Implants Res. 2017; 28: 1515-22. https://doi.org/10.1111/clr.13020 google scholar
  • 29. Gehrke, P.; Bleuel, K.; Fischer, C.; Sader, R., Influence of margin location and luting material on the amount of undetected cement excess on CAD/CAM implant abutments and cement-retained zirconia crowns: an in-vitro study. BMC Oral Health. 2019; 19: 1-12. https://doi.org/10.1186/s12903-019-0809-2 google scholar
  • 30. Al-Sanea, A.; Mutlu, I.; Kişioğlu, Y.; Mohamed, E., The Effect of V-Thread and Square Thread Dental Implants on Bone Stresses. J Biomim Biomater Biomed Eng. 2023; 60: 83-96. https://doi.org/10.4028/p-3qasy2 google scholar
  • 31. Novais, M.; Silva, A. S.; Mendes, J.; Barreiros, P.; Aroso, C.; Mendes, J. M., Fracture Resistance of CAD/CAM Implant-Supported 3Y-TZP-Zirconia Cantilevers: An In Vitro Study. Mater. 2022; 15: 6638. https://doi.org/10.3390/ma15196638 google scholar
  • 32. Ghavami-Lahiji, M.; Firouzmanesh, M.; Bagheri, H.; Kashi, T. S. J.; Razazpour, F.; Behroozibakhsh, M., The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite. Restor Dent Endod. 2018; 43. https://doi.org/10.5395/rde.2018.43.e26 google scholar
  • 33. Gomes, R. S.; Bergamo, E. T. P.; Bordin, D.; Cury, A. A. D. B., The substitution of the implant and abutment for their analogs in mechanical studies: In vitro and in silico analysis. Mater Sci Eng: C. 2017; 75: 50-54. https://doi.org/10.1016Zj.msec.2017.02.034 google scholar
  • 34. Stamenkovic, D.; Popovic, M.; Rudolf, R.; Zrilic, M.; Raic, K.; Duricic, K. O.; Stamenkovic, D., Comparative Study of the Microstructure and Properties of Cast-Fabricated and 3D-Printed Laser-Sintered Co-Cr Alloys for Removable Partial Denture Frameworks. Mater. 2023; 16: 3267. https://doi.org/10.3390/ma16083267 google scholar
  • 35. Sadid-Zadeh, R.; Lin, K.; Li, R.; Nagy, K., Fracture strength of screw-retained zirconia crowns assembled on zirconia and titanium implants. J Prosthodont. 2023. https://doi.org/10.1111/jopr.13683 google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Bayati, T.S., & Muhsin, S.A. (2024). İmplant destekli terminal zirkonya kantilever alt yapıların in vitro kırılma direnci. European Oral Research, 0(0), -. https://doi.org/10.26650/eor.20241338647


AMA

Bayati T S, Muhsin S A. İmplant destekli terminal zirkonya kantilever alt yapıların in vitro kırılma direnci. European Oral Research. 2024;0(0):-. https://doi.org/10.26650/eor.20241338647


ABNT

Bayati, T.S.; Muhsin, S.A. İmplant destekli terminal zirkonya kantilever alt yapıların in vitro kırılma direnci. European Oral Research, [Publisher Location], v. 0, n. 0, p. -, 2024.


Chicago: Author-Date Style

Bayati, Tabark Shihab Al, and Saja Ali Muhsin. 2024. “İmplant destekli terminal zirkonya kantilever alt yapıların in vitro kırılma direnci.” European Oral Research 0, no. 0: -. https://doi.org/10.26650/eor.20241338647


Chicago: Humanities Style

Bayati, Tabark Shihab Al, and Saja Ali Muhsin. İmplant destekli terminal zirkonya kantilever alt yapıların in vitro kırılma direnci.” European Oral Research 0, no. 0 (Nov. 2024): -. https://doi.org/10.26650/eor.20241338647


Harvard: Australian Style

Bayati, TS & Muhsin, SA 2024, 'İmplant destekli terminal zirkonya kantilever alt yapıların in vitro kırılma direnci', European Oral Research, vol. 0, no. 0, pp. -, viewed 22 Nov. 2024, https://doi.org/10.26650/eor.20241338647


Harvard: Author-Date Style

Bayati, T.S. and Muhsin, S.A. (2024) ‘İmplant destekli terminal zirkonya kantilever alt yapıların in vitro kırılma direnci’, European Oral Research, 0(0), pp. -. https://doi.org/10.26650/eor.20241338647 (22 Nov. 2024).


MLA

Bayati, Tabark Shihab Al, and Saja Ali Muhsin. İmplant destekli terminal zirkonya kantilever alt yapıların in vitro kırılma direnci.” European Oral Research, vol. 0, no. 0, 2024, pp. -. [Database Container], https://doi.org/10.26650/eor.20241338647


Vancouver

Bayati TS, Muhsin SA. İmplant destekli terminal zirkonya kantilever alt yapıların in vitro kırılma direnci. European Oral Research [Internet]. 22 Nov. 2024 [cited 22 Nov. 2024];0(0):-. Available from: https://doi.org/10.26650/eor.20241338647 doi: 10.26650/eor.20241338647


ISNAD

Bayati, TabarkShihab Al - Muhsin, SajaAli. İmplant destekli terminal zirkonya kantilever alt yapıların in vitro kırılma direnci”. European Oral Research 0/0 (Nov. 2024): -. https://doi.org/10.26650/eor.20241338647



ZAMAN ÇİZELGESİ


Gönderim06.08.2023
Kabul12.10.2023
Çevrimiçi Yayınlanma16.08.2024

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.