Derleme Makalesi

DOI :10.26650/IAR2022-1174374   IUP :10.26650/IAR2022-1174374    Tam Metin (PDF)

Digital Morphology: The Final Frontier

A. Murat Maga

Morphology is central to biological anthropology and its allied fields of anatomical sciences, forensics, and other related disciplines. Many biological anthropology students have their first real foray into the discipline after completing a course in osteology, craniometry, or vertebrate morphology. Unfortunately, the natural history collections that support this type of research and training have not grown. Many countries have strict rules about natural history specimen collections, and these collections seem to be concentrated in a few developed countries, regardless of where the specimens had been collected. Thus, access to comparative material can be problematic where such collections are not readily available. Even if collections are available, accessing them can be severely restricted due to external circumstances, as the prolonged pandemic has shown. Luckily, digital morphology has emerged over the last decade as a new field that stands to change the landscape of specimenbased research and training. Concerted 2D and 3D digitization efforts, the emergence of online aggregate specimen repositories, and availability of comprehensive open-source software tools (such as 3D Slicer) for utilizing these resources has conveniently transformed the field of quantitative and comparative morphology. In this brief review, I will focus explicitly on the 3D Slicer ecosystem and how it can be leveraged as part of a curriculum or research program on digital morphology. In a nutshell, the primary differentiator of the 3D Slicer is not that it is just free but that it is open-source and extensible, making access to digital data more equitable for everyone. I will particularly focus on the 3D Slicer’s SlicerMorph extension, which facilitates 3D geometric morphometric data collection and analysis within the Slicer ecosystem, so all the steps in the digital morphology workflow from import, visualization, and data collection to visualizing the morpho-space can be achieved in a single, well-documented environment.

PDF Görünüm


  • Adams, D. C., & Otarola-Castillo, E. (2013). geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4, 393-399. google scholar
  • Adams, Dean C. (2016). Evaluating modularity in morphometric data: Challenges with the RV coefficient and a new test measure. Methods in Ecology and Evolution, n/a-n/a. google scholar
  • Adams, Dean C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: Geometric morphometrics in the 21st century. Hystrix-Italian Journal of Mammalogy, 24(1), 7-14. hystrix-24.1-6283 google scholar
  • Berry, S. D., & Edgar, H. J. (2021). Announcement: The New Mexico decedent image database. Forensic Imaging, 24, 200436. google scholar
  • Bookstein, F. L. (1997). Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Medical Image Analysis, 1(3), 225-243. google scholar
  • Boyer, D. M., Gunnell, G. F., Kaufman, S., & McGeary, T. M. (2016). MORPHOSOURCE: ARCHIVING AND SHARING 3-D DIGITAL SPECIMEN DATA. The Paleontological Society Papers, 22, 157181. google scholar
  • Diaz-Pinto, A., Alle, S., Ihsani, A., Asad, M., Nath, V., Perez-Garcia, F., Cardoso, M. J. (2022). MONAI Label: A framework for AI-assisted Interactive Labeling of 3D Medical Images. ArXiv E-Prints. Retrieved from google scholar
  • Dryden, I. L., & Mardia, K. M. (2008). Statistical Shape Analysis. Chicester: John Wiley and Sons. google scholar
  • Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., ... Kikinis, R. (2012). 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging, 30(9), 1323-1341. google scholar
  • Goodall, C. (1991). Procrustes Methods in the Statistical Analysis of Shape. Journal of the Royal Statistical Society. Series B (Methodological), 53(2), 285-339. google scholar
  • Kapur, T., Pieper, S., Fedorov, A., Fillion-Robin, J.-C., Halle, M., O’Donnell, L., . Kikinis, R. (2016). Increasing the impact of medical image computing using community-based open-access hackathons: The NA-MIC and 3D Slicer experience. Medical Image Analysis, 33, 176-180. https://doi. org/10.1016/ google scholar
  • Kent, J. T., & Mardia, K. V. (1997). Consistency of Procrustes Estimators. Journal of the Royal Statistical Society. Series B (Methodological), 59(1), 281-290. google scholar
  • Kikinis, R., Pieper, S. D., & Vosburgh, K. G. (2014). 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. In Intraoperative Imaging and Image-Guided Therapy (pp. 277-289). Springer, New York, NY. google scholar
  • Klingenberg, C. P. (2010). Evolution and development of shape: Integrating quantitative approaches. Nature Reviews Genetics, 11(9), 623-635. google scholar
  • Klingenberg, C. P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353-357. google scholar
  • Klingenberg, C. P. (2015). Analyzing Fluctuating Asymmetry with Geometric Morphometrics: Concepts, Methods, and Applications. Symmetry, 7(2), 843-934. google scholar
  • Klingenberg, C. P. (2016). Size, shape, and form: Concepts of allometry in geometric morphometrics. Development Genes and Evolution, 226, 113-137. google scholar
  • Mitteroecker, P., & Gunz, P. (2009). Advances in Geometric Morphometrics. Evolutionary Biology, 36(2), 235-247. google scholar
  • Porto, A., Rolfe, S., & Maga, A. M. (2021). ALPACA: A fast and accurate computer vision approach for automated landmarking of three-dimensional biological structures. Methods in Ecology and Evolution, 12(11), 2129-2144. google scholar
  • Punzo, D., van der Hulst, J. M., Roerdink, J. B. T. M., Fillion-Robin, J. C., & Yu, L. (2017). SlicerAstro: A 3-D interactive visual analytics tool for HI data. Astronomy and Computing, 19, 45-59. https://doi. org/10.1016/j.ascom.2017.03.004 google scholar
  • Richtsmeier, J. T., Deleon, V. B., & Lele, S. R. (2002). The promise of geometric morphometrics. Yearbook of Physical Anthropology, Vol 45, 45, 63-91. google scholar
  • Rohlf, F. J. (2000). Statistical power comparisons among alternative morphometric methods. American Journal of Physical Anthropology, 111(4), 463-478.<463::AID-AJPA3>3.0.CO;2-B google scholar
  • Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Systematic Zoology, 39(1), 40-59. google scholar
  • Rolfe, S., Davis, C., & Maga, A. M. (2021). Comparing semi-landmarking approaches for analyzing three-dimensional cranial morphology. American Journal of Physical Anthropology, 175(1), 227-237. google scholar
  • Rolfe, S. M., & Maga, A. M. (2022, August 29). Deep Learning Enabled Multi-Organ Segmentation of Mouse Embryos (p. 2022.08.26.505447). p. 2022.08.26.505447. bioRxiv. https://doi. org/10.1101/2022.08.26.505447 google scholar
  • Rolfe, S., Pieper, S., Porto, A., Diamond, K., Winchester, J., Shan, S., ... Maga, A. M. (2021). SlicerMorph: An open and extensible platform to retrieve, visualize and analyse 3D morphology. Methods in Ecology and Evolution, 12(10), 1816-1825. google scholar
  • Zelditch, M. (2012). Geometric morphometrics for biologists: A primer. Amsterdam: Elsevier/Academic Press. google scholar
  • Zhang, C., Porto, A., Rolfe, S., Kocatulum, A., & Maga, A. M. (2022, January 25). Automated Landmarking via Multiple Templates (p. 2022.01.04.474967). p. 2022.01.04.474967. bioRxiv. https:// google scholar


Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın



Maga, A.M. (2022). Digital Morphology: The Final Frontier. İstanbul Antropoloji Dergisi, 0(2), 45-59.


Maga A M. Digital Morphology: The Final Frontier. İstanbul Antropoloji Dergisi. 2022;0(2):45-59.


Maga, A.M. Digital Morphology: The Final Frontier. İstanbul Antropoloji Dergisi, [Publisher Location], v. 0, n. 2, p. 45-59, 2022.

Chicago: Author-Date Style

Maga, A. Murat,. 2022. “Digital Morphology: The Final Frontier.” İstanbul Antropoloji Dergisi 0, no. 2: 45-59.

Chicago: Humanities Style

Maga, A. Murat,. Digital Morphology: The Final Frontier.” İstanbul Antropoloji Dergisi 0, no. 2 (May. 2023): 45-59.

Harvard: Australian Style

Maga, AM 2022, 'Digital Morphology: The Final Frontier', İstanbul Antropoloji Dergisi, vol. 0, no. 2, pp. 45-59, viewed 28 May. 2023,

Harvard: Author-Date Style

Maga, A.M. (2022) ‘Digital Morphology: The Final Frontier’, İstanbul Antropoloji Dergisi, 0(2), pp. 45-59. (28 May. 2023).


Maga, A. Murat,. Digital Morphology: The Final Frontier.” İstanbul Antropoloji Dergisi, vol. 0, no. 2, 2022, pp. 45-59. [Database Container],


Maga AM. Digital Morphology: The Final Frontier. İstanbul Antropoloji Dergisi [Internet]. 28 May. 2023 [cited 28 May. 2023];0(2):45-59. Available from: doi: 10.26650/IAR2022-1174374


Maga, A.Murat. Digital Morphology: The Final Frontier”. İstanbul Antropoloji Dergisi 0/2 (May. 2023): 45-59.


Çevrimiçi Yayınlanma01.01.2023


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.