Araştırma Makalesi


DOI :10.26650/JGEOG434650   IUP :10.26650/JGEOG434650    Tam Metin (PDF)

Mekânsal Veri Analizi Teknikleriyle Türkiye’de Toplam Doğurganlık Hızının Dağılımı ve Modellenmesi

Olgu AydınPınar Aslantaş BostanErtuğrul Murat Özgür

Türkiye’de doğurganlık geçmiş kırk yılı aşkın bir sürede, hızlı ve bir geçiş oluşturacak şekilde düşmüştür. Ancak doğurganlık, bölgesel düzeyde farklılıklar göstermekte ve Türkiye’nin batısı düşük doğurganlık düzeyine eriştiği halde, doğusu ve güneydoğusu, eğitim düzeyinin düşüklüğü ve etno-kültürel farklılıklara bağlı olarak hâlâ orta ve yüksek düzeyli doğurganlıklar sergilemektedir. Türkiye’de toplam doğurganlık hızının mekânsal örüntüsüne odaklanan bu çalışmada, doğurganlık hızına etki eden bazı ekonomik ve sosyo-kültürel değişkenler kullanılarak mekânsal veri analizi teknikleri yardımıyla mekânsal verinin gösterimi, araştırılması ve modellenmesi gerçekleştirilmiştir. Çalışmanın bulguları, Moran’s I saçılma grafiğine göre Türkiye’de toplam doğurganlık hızının yüksek-yüksek (YY) ve düşük-düşük (DD) olarak iki grupta yer aldığını ortaya koymaktadır. Yerel mekânsal oto-korelasyon (LISA) sonuçları, Türkiye’nin Doğu ve Güneydoğu Anadolu bölgelerinde pozitif, Marmara, Ege, Batı Karadeniz ve Orta Anadolu bölgelerinde negatif yönde bir mekânsal oto-korelasyonun olduğunu göstermektedir. Çalışmada iki regresyon modeli En Küçük Kareler Yöntemi (OLS) ve Coğrafi Ağırlıklı Regresyon (GWR) uygulanmış ve sonuçları karşılaştırılmıştır. Coğrafi Ağırlıklı Regresyon (GWR) modelinin, %93 oranında bağımlı değişkenin varyasyonlarını açıkladığı ve elde edilen sonuçlara göre, Türkiye’de toplam doğurganlık hızını modellemede başarılı olduğu gözlenmiştir. Aynı zamanda okur-yazar olmayan kadın oranı ve Kürt kökenli kadın oranı değişkenleriyle, toplam doğurganlık hızının yüksek olduğu yerlerde gerçeğe yakın ölçüm sonuçlarını gösteren bir model elde edilmiştir. Bu çalışma, mekânsal veri analizi yöntemlerinin sosyo-demografik çalışmalara farklı bir bakış açısı sağlaması nedeniyle önem taşımaktadır.

DOI :10.26650/JGEOG434650   IUP :10.26650/JGEOG434650    Tam Metin (PDF)

Spatial Distribution and Modelling of the Total Fertility Rate in Turkey Using Spatial Data Analysis Techniques

Olgu AydınPınar Aslantaş BostanErtuğrul Murat Özgür

The fertility rate has been declining for over four decades in Turkey. However, the fertility rate has shown regional variability due to ethno-cultural differences. While the fertility rate is low in the Western part of Turkey, the Eastern and Southeastern parts have still shown moderate to high rates. This study focuses on the spatial patterns of the total fertility rate. Using variables that may affect the fertility rate, such as economic and socio-cultural parameters, we performed spatial data analysis techniques to represent, analyze, and model the spatial data. The results show that according to Moran’s scatter plot, Turkey’s total fertility rate falls into two groups: high-high and low-low. On the other hand, local Moran’s I results have shown that while the East and Southeastern regions have positive auto-correlations, Marmara, the Aegean, the West Black Sea, and the Middle Anatolia regions have negative autocorrelations. In this study, we applied both the ordinary least square (OLS) and geographically weighted regression (GWR) models and compared the results. In GWR analysis, variance of the dependent variable was shown to be 93%, and we achieved a high success rate in modeling Turkey’s total fertility rate. In the limitation of this study, using an illiterate female population rate and Kurdish female population rate variables, one can obtain more accurate models that show the total fertility rate and show where the fertility rate is high. As a conclusion, spatial data analysis methods bring a new perspective to sociodemographic studies. 


GENİŞLETİLMİŞ ÖZET


Recently, the number of studies frequently using statistical techniques, and software designed for geo-referenced data, and spatial analysis in many disciplines of social sciences has increased. Because of this increase, both geographers and demographers focus on the importance of spatial data analysis and the implementation of these methods in demographic studies, including fertility. Fertility has been dropping abruptly to form a transition for forty years in Turkey. At the regional level, while Turkey’s Western part has shown low fertility, the Eastern and Southeast regions, on the other hand, have not shown a significant fertility transition, and they have revealed high fertility levels, depending on the impairment and ethnic differences in the level of education. The aim of this study is to figure out the spatial patterns of the total fertility rate in Turkey, using economic and socio-cultural variables (non-literate female ratio (%), an undergraduate female ratio (%), a female wageworker ratio (%), gross national product per capita (US dollars), an urbanization score with demographiceconomic-social variables, the female Kurdish population rate (%), the Kurdish population rate (%), the female Arabic population rate (%), the number of medical doctors per person, and the average life span (years) that affecting the fertility rate. To achieve this, the spatial data were arranged, investigated, and modeled via spatial data analysis techniques. By taking into account fertility related variables, correlation analysis was performed. The ratio of non-literate women and the proportion of Kurdish women showed a high positive correlation. Different spatial weight matrices (spatial weight matrix) were created to investigate the distribution of data in the study. Moran’s I and Z values were taken into consideration, and a fixed distance of 200 km was specified for use in weight matrix analysis. A global autocorrelation (Global Moran’s I) graph was measured as 0.7836. According to the Moran scatter plot, the total fertility rate in Turkey is split into two groups: either high-high (YY) or low-low (DD). According to local indicators of spatial associations results, Northeast Anatolia, Central East, and Southeast Anatolia have a positive spatial autocorrelation, whereas in Istanbul, West Marmara, East Marmara, West Anatolia, the Aegean, and Mediterranean regions have a negative spatial autocorrelation. Next, two regression models, the ordinary least square (OLS) and geographically weighted regression (GWR), were compared. The values of Akaike’s information criterion (AIC) and the adjusted R2 were measured as 73.64 and 0.90, respectively. The AIC value is 63.08 and the adjusted R2 value is 0.93 in GWR analysis. The GWR model was able to explain 93% of the variants of the dependent variable. This study has clearly shown the difference in the spatial patterns of fertility in Turkey. It also shows that the relationship between the total fertility rate and sociodemographic variables can be explained using spatial data analysis methods. The GWR model gave the most accurate results in places where the ratio of non-literate women and Kurdish women, closely related to the total fertility rate, were high. According to the results, there is a positive relation between the rate of illiterate women and the total fertility rate. In other words, as the rate of illiteracy increases, there is also an increase in the total fertility rate. This feature prevails in Turkey’s Eastern and Southeastern regions. The fact that the literacy rate is very low for women clearly shows that there is gender discrimination in these regions. The negative relationship between fertility and education level shows that as the education level increases, there is a decrease in the total fertility rate. Women living in urban areas are more educated than the ones living in rural areas in Turkey. This situation results in a decrease in the fertility levels of women living in urban areas. On the other hand, as the proportion of women with Kurdish origin increases, total fertility rate increases. These results, showing the relationship between ethnicity and the total fertility rate, point out that a woman’s fertility is a criterion for acceptance by the community where the heavily Kurdish origin populations live. As a result, the habitat shapes individuals. Displaying spatial data analysis methods using socio-demographic indicators, aside from merely discussing these effects, gains a different point of view to this study.


PDF Görünüm

Referanslar

  • Akça, H. ve Ela, M. (2012). Türkiye’de eğitim, doğurganlık ve işsizlik ilişkisinin analizi. Maliye Dergisi, 163, 223–242. google scholar
  • Aksoy, E. (2006). Clustering with GIS: An attempt to classify Turkish district data. Germany Paper presented at the XXIII FIG Congress, Munich, 8-13 October 2006, pp. 1–16. Retrieved from http://www.fig.net/resources/proceedings/fig_proceedings/fig2006/papers/ts47/ts47_05_aksoy_0327.pdf google scholar
  • Alaba, O. O., Olubusoye, E. O., & Olaomi, J. O. (2017). Spatial patterns and determinants of fertility levels among women of childbearing age in Nigeria. South African Family Practice, 59(4), 143–147. google scholar
  • Andrews, P. A. (1989). Ethnic groups in the Republic of Turkey. Wiesbaden, DE: Dr. Ludwig Reichert Verlag. google scholar
  • Anselin, L. (1995). Local indicators of spatial association-LISA. Geographical Analysis, 27, 93–115. google scholar
  • Anselin, L. (1996). The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In M. Fischer, H. J. Scholten & D. Unwin (Eds.), Spatial analytical perspectives on GIS, (pp. 111–125). London, UK: Taylor&Francis. google scholar
  • Anselin, L. (1998). Interactive techniques and exploratory spatial data analysis. In P. A. Longley, M. F. Goodchild, D. J. Maguire, D. W. Wind (Eds.), Geographical information systems: Principles, techniques, management and applications, (pp. 253–265). New York, NY: Wiley. google scholar
  • Anselin, L. (2002). Under the hood: Issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27, 247–267. google scholar
  • Anselin, L. (2003). Spatial externalities, spatial multipliers, and spatial econometrics. International Regional Science Review, 26, 153–166. google scholar
  • Aran, M., Çapar, S., Hüsamoğlu, M., Sanalmış, D. ve Uraz, A. (2009). Türkiye’de kadınların işgücüne katılımında son eğilimler. Ankara: Dünya Bankası ve T.C. Başbakanlık Devlet Planlama Teşkilatı. google scholar
  • Bailey, T. C., & Gatrell, A. C. (1995). Interactive spatial data analysis. Harlow, UK: Addison Wesley Longman Limited. google scholar
  • Basu, A. M. (2002). Why does education lead to lower fertility? A critical review of some of the possibilities. World Development, 30(10), 1779–1790. google scholar
  • Başkaya, Z. ve Özkılıç, F. (2017). Türkiye’de doğurganlıkta meydana gelen değişimler (1980–2013). Uluslararası Sosyal Araştırmalar Dergisi, 10(54), 404–423. google scholar
  • Breierova, L., & Duffo, E. (2002). The impact of education on fertility and child mortality: Do fathers really matter less than fathers. Cambridge, UK: National Bureau of Economic Research-NBER. google scholar
  • Chi, G., & Zhu, J. (2008). Spatial regression models for demographic analysis. Population Research and Policy Review, 27, 17–42. google scholar
  • Cleland, J. (2002). Education and future fertility trends with special reference to mid-transitional countries. In United Nations Population Division (Ed.), Completing the fertility transition (pp. 187–202). New York, NY: Author. google scholar
  • Cliff, A. D., & Ord, J. K. (1973). Spatial autocorrelation. London, UK: Pion. google scholar
  • Cliff, A. D., & Ord, J. K. (1981). Spatial process: Models and applications. London, UK: Pion. google scholar
  • Çelebioğlu, F., & Dall’erba, S. (2009). Spatial disparities across the regions of Turkey: An exploratory spatial data analysis. The Annals of Regional Science, 45(2), 379–400. google scholar
  • Dayıoğlu, M. ve Kırdar, M. G. (2009). Türkiye’de kadınların işgücüne katılımında belirleyici faktörler ve eğilimler. Ankara: Orta Doğu Teknik Üniversitesi. google scholar
  • de Castro, M. C. (2007). Spatial demography: An opportunity to improve policy making at diverse decision levels. Population Research and Policy Review, 26(5–6), 477–509. google scholar
  • Demir, O. (1997). Türkiye’nin doğu sorunu ve çözüm yolları (ekonomi öncelikli bir analiz). Amme İdaresi Dergisi, 10(3), 97–117. google scholar
  • Erman, T. (1998). Becoming “urban” or remaining “rural”: The views of Turkish rural to urban migrants on the “integration” question. International Journal of Middle East Studies, 30, 541–561. google scholar
  • Erman, T. (2001). Rural migrants and patriarchy in Turkish cities. International Journal of Urban and Regional Research, 25, 118–133. google scholar
  • Eryurt, M. A. (2005). Türkiye’de doğurganlığı belirleyen ara değişkenler: Yakın döneme bakarken. Nüfusbilim Dergisi, 27, 67–84. google scholar
  • Evans, A., & Gray, E. (2017). Modelling variation in fertility rates using geographically weighted regression. Spatial Demography, 6(2), 121–140. http://dx.doi.org/10.1007/s40980-017-0037-9. google scholar
  • Ezcurra, R., Pascual, P., & Rapún, M. (2007). The spatial distribution of income inequality in the European Union. Environment and Planning, 39, 869–890. google scholar
  • Fotheringham, A. S., Charlton, M. E., & Brunsdon, C. (1998). Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30(11), 1905–1927. google scholar
  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. Wiley, Chichester. google scholar
  • Gallo, J. L., & Ertur, C. (2003). Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe. Papers in Regional Science, 82(2), 175–201. google scholar
  • Getis, A., & Ord, J. K. (1996). Local spatial statistics: An overview. In P. Longley & M. Batty (Eds.), Spatial analysis: Modeling in a GIS environment, (pp. 261–277). Cambridge, UK: GeoInformation International. google scholar
  • Gezici, F., & Hewings, G. J. D. (2002). Spatial data analysis of regional inequalities in Turkey. European Planning Studies, 15(3), 383–403. google scholar
  • Gober, P., & Tyner, J. A. (2004). Population geography. In G. L. Gaile & C. J. Willmott (Eds.), Geography in America at the dawn of the 21st century (pp. 185–199). Oxford, UK: Oxford University Press. google scholar
  • Goodchild, M. F., & Janelle, D. G. (2004). Thinking spatially in the social sciences. In M. F. Goodchild & D. G. Janelle (Eds.), Spatially integrated social science (pp. 3–17). Oxford, UK: Oxford University Press. google scholar
  • Griffith, D. A., & Layne, L. J. (1999). A casebook for spatial statistical data analysis: A compilation of analyses of different thematic data sets. Oxford, UK: Oxford University Press. google scholar
  • Gündüz-Hoşgör, A., & Smits, J. (2006). The status of rural women in Turkey: What is the role of regional differences. Nijmegen Center for Economics (NiCE) Working Paper 06–101. Retrieved from https://www.ru.nl/publish/pages/516298/nice_06101.pdf google scholar
  • Hacettepe Üniversitesi Nüfus Etütleri Enstitüsü. (2014). 2013 Türkiye nüfus ve sağlık araştırması. Ankara: Yazar, T.C. Kalkınma Bakanlığı ve TÜBİTAK. google scholar
  • Işık, O., & Pınarcıoğlu, M. M. (2006). Geographies of a silent transition: A geographically weighted regression approach to regional fertility differences in Turkey. European Journal of Population, 22(4), 399–421. google scholar
  • İnce, M. ve Demir, M. (2006). Kadın işgücü belirleyici faktörler: Türkiye’den ampirik kanıtlar. Eskişehir Osmangazi Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 1(1), 71–90. google scholar
  • Johnson, K. M., Voss, P. R., Hammer, R. B., Fuguitt, G. V., & Mcniven, S. (2005). Temporal and spatial variation in age-specific net migration in the United States. Demography, 42(4), 791–812. google scholar
  • Kalogirou, S., & Hatzichristos, T. (2007). A spatial modelling framework for income estimation. Spatial Economic Analysis, 2(3), 297–315. google scholar
  • Koç, İ., Hancıoğlu, A., & Çavlin, A. (2008). Demographic differentials and demographic integration of Turkish and Kurdish populations in Turkey. Population Research and Policy Review, 27(4), 447–457. google scholar
  • Koçak, S. (1999). Türk İşgücü Piyasası’nda toplumsal cinsiyet ayrımcılığı. (Doktora Tezi). De Montfort Üniversitesi, İngiltere. google scholar
  • Muniz, J. O. (2009). Spatial dependence and heterogeneity in ten years of fertility decline in Brazil. Population Review, 48(2), 32–65. google scholar
  • Mutlu, S. (1995). Population of Turkey by ethnic groups and provinces. New Perspectives on Turkey, 12, 33–60. google scholar
  • Mutlu, S. (1996). Ethnic kurds in Turkey: A demographic study. International Journal of Middle East Studies, 28(4), 517–541. google scholar
  • Newbold, K.B. (2014). Population geography: Tools and issues (2nd ed.). Lanham, MD: Rowman and Littlefield Publishers. google scholar
  • Omariba, D. W. R. (2006). Women’s educational attainment and intergenerational patterns of fertility behaviour in Kenya. Journal of Biosocial Science, 38(4), 449–479. google scholar
  • Özbay, F. (1995). Kadının statüsü ve doğurganlık. N. Arat (Ed.), Türkiye’de kadın olgusu içinde (s. 147–165). İstanbul: Say Yayınları. google scholar
  • Özgür, E. M. (2004). Türkiye’de toplam doğurganlık hızının mekânsal dağılışı. Coğrafi Bilimler Dergisi, 2(2), 1–12. google scholar
  • Özgür E. M. ve Aydın, O. (2011). Türkiye’de evlilik göçünün mekânsal veri analizi teknikleriyle değerlendirilmesi. Coğrafi Bilimler Dergisi, 9(1), 29–40. google scholar
  • Özgür, E. M., & Aydin, O. (2012). Spatial patterns of marriage migration in Turkey. Marriage and Family Review, 48(5), 418–442. google scholar
  • Özgür, E. M. (2016). Bir alt alan olarak nüfus coğrafyasının geçmişi, bugünü ve geleceği. Ege Coğrafya Dergisi, 25(1), 1–36. google scholar
  • Özsoy, A. E., Koç, I., & Toros, A. (1992). Ethnic structure in Turkey as implied by the analysis of census data on mother tongue. Turkish Journal of Population Studies, 14, 101–114. google scholar
  • Pancaroğlu, N. S. (2006). Kentlerde kadınların işgücüne ve istihdama katılım sorunları: İzmit örneği. (Yüksek Lisans Tezi), Kocaeli Üniversitesi Sosyal Bilimler Enstitüsü, Kocaeli. google scholar
  • Paul, R., Voss, K. J., Curtis, W., & Roger, B. H. (2006). Explorations in spatial demography. In W. A. Kandel & D. L. Brown (Eds.), Population change and rural society (pp. 407–429). Netherlands, NL: Springer. google scholar
  • Royston, E., & Armstrong, S. (1989). Preventing maternal deaths. Geneva, CH: World Health Organization. google scholar
  • Sencer, M. (1993). GAP Bölgesi’nde toplumsal değişme eğilimleri. Ankara: Türk Mühendis ve Mimar Odaları Birliği Ziraat Mühendisleri Odası Yayını. google scholar
  • Singh, A., Kumar, K., Pathak, K. P., Chauhan, K. R., & Banerjee, A. (2017). Spatial patterns and determinants of fertility in India, Population, 3(72), 505–526. google scholar
  • State Planning Organization. (2003). İllerin ve bölgelerin sosyo-ekonomik gelişmişlik siralamasi araştırması (Socio-Economic developmental range survey of provinces and regions). Ankara, Turkey: Author. google scholar
  • Taymaz, E. (2009). Büyüme, istihdam, beceriler ve kadın işgücü. Ankara: Ekonomik Araştırmalar Merkezi, Ortadoğu Teknik Üniversitesi. google scholar
  • Tekeli, İ. (2008). Türkiye’de bölgesel eşitsizlik ve bölge planlama yazıları. İstanbul: Tarih Vakfı Yurt Yayınları. google scholar
  • Turkish State Institute of Statistics. (1969). 1965 census of population. Ankara: Author. google scholar
  • Turkish State Institute of Statistics. (1995). Turkey’s population, structure of demography and growth, 1923–1994. Ankara: Author. google scholar
  • Turkish State Institute of Statistics. (1996). 1995 statistical yearbook of Turkey. Ankara: Author. google scholar
  • Turkish State Institute of Statistics. (2002a). 2000 census of population (by provinces): Social and economic characteristics of the population. Ankara: Author. google scholar
  • Turkish State Institute of Statistics. (2002b). 2001 statistical yearbook of Turkey. Ankara: Author. google scholar
  • Turkish State Institute of Statistics. (2003). 2000 census of population (Turkey general). Ankara: Author. google scholar
  • Türkiye İstatistik Kurumu. (2017). Dünya nüfus günü, 2017, Sayı: 24639. Erişim adresi: http://www.tuik.gov.tr/PreHaberBultenleri.do?id=24639 google scholar
  • Türkiye İstatistik Kurumu. (2017). Doğum istatistikleri, 2016. Erişim adresi: http://www.tuik.gov.tr/PreHaberBultenleri.do?id=24647 google scholar
  • Türkiye İstatistik Kurumu. (2018). İstatistiklerle kadın, 2017. Erişim adresi: http://www.tuik.gov.tr/PreHaberBultenleri.do?id=27594 google scholar
  • Vitali, A., & Billari, F. (2017). Changing determinants of low fertility and diffision: A spatial analysis for Italy. Population, Space and Place, 23, 1–18. google scholar
  • Voss, P. R. (2007). Demography as a spatial social science. Population Research and Policy Review, 26(5–6), 457–476. google scholar
  • Wong, A. D., & Lee, J. (2005). Statistical analysis of geographic information with ArcView and ArcGIS. John Wiley&Sons, Inc Hoboken, NJ. google scholar
  • Yakar, M. (2012). 21. yüzyıl çeyreğinde Türkiye nüfusunda ne değişti? Uluslararası Sosyal Araştırmalar Dergisi, 5(21), 382–402. google scholar
  • Yavuz, S. (2006). Completing the fertility transition: Third birth developments by language groups in Turkey. Demographic Research, 15(15), 435–460. http://dx.doi.org/10.4054/DemRes.2006.15.15 google scholar
  • Yıldırım, J., Öcal, N., & Özyıldırım, S. (2009a). Income inequality and economic convergence in Turkey: A spatial effect analysis. International Regional Science Review, 32, 221. google scholar
  • Yıldırım, J., Öcal, N., & Korucu, N. (2009b). Analysing the determinants of terrorism in Turkey using geographically weighted regression. Retrieved from http://www.ub.edu/sea2009.com/Papers/10.pdf google scholar
  • Yüceşahin, M. M., & Özgür, E. M. (2008). Regional fertility differences in Turkey: Persistent high fertility in the Southeast. Population, Space and Place, 14(2), 135–158. google scholar

Atıflar

Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın


DIŞA AKTAR



APA

Aydın, O., Aslantaş Bostan, P., & Özgür, E.M. (2018). Mekânsal Veri Analizi Teknikleriyle Türkiye’de Toplam Doğurganlık Hızının Dağılımı ve Modellenmesi. Coğrafya Dergisi, 0(37), 27-45. https://doi.org/10.26650/JGEOG434650


AMA

Aydın O, Aslantaş Bostan P, Özgür E M. Mekânsal Veri Analizi Teknikleriyle Türkiye’de Toplam Doğurganlık Hızının Dağılımı ve Modellenmesi. Coğrafya Dergisi. 2018;0(37):27-45. https://doi.org/10.26650/JGEOG434650


ABNT

Aydın, O.; Aslantaş Bostan, P.; Özgür, E.M. Mekânsal Veri Analizi Teknikleriyle Türkiye’de Toplam Doğurganlık Hızının Dağılımı ve Modellenmesi. Coğrafya Dergisi, [Publisher Location], v. 0, n. 37, p. 27-45, 2018.


Chicago: Author-Date Style

Aydın, Olgu, and Pınar Aslantaş Bostan and Ertuğrul Murat Özgür. 2018. “Mekânsal Veri Analizi Teknikleriyle Türkiye’de Toplam Doğurganlık Hızının Dağılımı ve Modellenmesi.” Coğrafya Dergisi 0, no. 37: 27-45. https://doi.org/10.26650/JGEOG434650


Chicago: Humanities Style

Aydın, Olgu, and Pınar Aslantaş Bostan and Ertuğrul Murat Özgür. Mekânsal Veri Analizi Teknikleriyle Türkiye’de Toplam Doğurganlık Hızının Dağılımı ve Modellenmesi.” Coğrafya Dergisi 0, no. 37 (May. 2025): 27-45. https://doi.org/10.26650/JGEOG434650


Harvard: Australian Style

Aydın, O & Aslantaş Bostan, P & Özgür, EM 2018, 'Mekânsal Veri Analizi Teknikleriyle Türkiye’de Toplam Doğurganlık Hızının Dağılımı ve Modellenmesi', Coğrafya Dergisi, vol. 0, no. 37, pp. 27-45, viewed 21 May. 2025, https://doi.org/10.26650/JGEOG434650


Harvard: Author-Date Style

Aydın, O. and Aslantaş Bostan, P. and Özgür, E.M. (2018) ‘Mekânsal Veri Analizi Teknikleriyle Türkiye’de Toplam Doğurganlık Hızının Dağılımı ve Modellenmesi’, Coğrafya Dergisi, 0(37), pp. 27-45. https://doi.org/10.26650/JGEOG434650 (21 May. 2025).


MLA

Aydın, Olgu, and Pınar Aslantaş Bostan and Ertuğrul Murat Özgür. Mekânsal Veri Analizi Teknikleriyle Türkiye’de Toplam Doğurganlık Hızının Dağılımı ve Modellenmesi.” Coğrafya Dergisi, vol. 0, no. 37, 2018, pp. 27-45. [Database Container], https://doi.org/10.26650/JGEOG434650


Vancouver

Aydın O, Aslantaş Bostan P, Özgür EM. Mekânsal Veri Analizi Teknikleriyle Türkiye’de Toplam Doğurganlık Hızının Dağılımı ve Modellenmesi. Coğrafya Dergisi [Internet]. 21 May. 2025 [cited 21 May. 2025];0(37):27-45. Available from: https://doi.org/10.26650/JGEOG434650 doi: 10.26650/JGEOG434650


ISNAD

Aydın, Olgu - Aslantaş Bostan, Pınar - Özgür, ErtuğrulMurat. Mekânsal Veri Analizi Teknikleriyle Türkiye’de Toplam Doğurganlık Hızının Dağılımı ve Modellenmesi”. Coğrafya Dergisi 0/37 (May. 2025): 27-45. https://doi.org/10.26650/JGEOG434650



ZAMAN ÇİZELGESİ


Gönderim19.06.2018
Kabul26.10.2018

LİSANS


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


PAYLAŞ



İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.