BÖLÜM


DOI :10.26650/B/LSB23LSB24.2024.026.003   IUP :10.26650/B/LSB23LSB24.2024.026.003    Tam Metin (PDF)

Akuaponi̇k Si̇stemler: Sürdürülebi̇li̇r Gıda Üreti̇mi̇ İçi̇n Umut Veren Bi̇r Çözüm

Gökhan TunçelliDevrim MemişNuray Erkan

Akuaponik sistemler, akuakültür ile topraksız tarım (hidroponik) sistemlerinin birleşmesiyle oluşturulan ekonomik, ekolojik ve sosyal faydalar sağlayan yenilikçi bir üretim modelidir. Bu sistem, balık ve bitki üretimini aynı döngü içinde gerçekleştirerek organik atıkların geri dönüştürülmesini sağlar. Gıda güvenliği ve sürdürülebilirlik açısından önemli olan akuaponik sistemler, çevresel etkileri azaltırken, verimliliği artırır ve atıkların yönetimini optimize eder. Özellikle su kıtlığı ve toprak verimsizliği sorunları yaşayan bölgeler için ideal bir çözüm oluşturur. Bu sistemin verimli çalışması, su kalitesinin sürekli izlenmesi, pH dengesi, su sıcaklığı, çözünmüş oksijen ve bakteriyel aktivitenin kontrol edilmesiyle mümkündür. Akuaponik sistemler, ayrıca enerji ve su kullanımında yüksek verimlilik sağlar ve sürdürülebilir kalkınma hedeflerine katkıda bulunur. Gıda güvencesi ve güvenli gıda üretiminde büyük bir potansiyele sahip olan akuaponik sistemler, kapalı devre özellikleri sayesinde kimyasalların kullanımını minimuma indirir ve tarımsal verimliliği artırır. Özellikle kentleşmenin arttığı bölgelerde, yerel ve taze gıda üretimini sağlayan bu sistem, karbon ayak izini azaltarak sürdürülebilir gıda üretiminde gelecek için umut vaad eder.


DOI :10.26650/B/LSB23LSB24.2024.026.003   IUP :10.26650/B/LSB23LSB24.2024.026.003    Tam Metin (PDF)

Aquaponic Systems: A Promising Solution for the Sustainable Food Production

Gökhan TunçelliDevrim MemişNuray Erkan

Aquaponic systems are an innovative production model that combines aquaculture with hydroponic (soilless) farming systems, providing economic, ecological, and social benefits. This system enables the production of fish and plants within the same cycle, recycling organic waste. Aquaponic systems are crucial for food security and sustainability, reducing environmental impacts while increasing efficiency and optimising waste management. They are particularly ideal for regions facing water scarcity and soil infertility. The efficient operation of this system requires continuous monitoring of water quality, pH balance, water temperature, dissolved oxygen, and bacterial activity. Aquaponic systems also offer high efficiency in energy and water usage and contribute to sustainable development goals. With significant potential in food security and safe food production, aquaponic systems minimise the use of chemicals and enhance agricultural productivity due to their closed-loop nature. These system models, which provide local and fresh food production, especially in urbanised areas, reduce the carbon footprint and offer promising prospects for sustainable food production in the future.



Referanslar

  • Alexandratos, N. & Bruinsma, J. (2012). World agriculture towards 2030/50: the 2012 revision, ESA Work. Paper 12-03. UN Food Agriculture Organization (FAO), Rome. google scholar
  • Aneja, V.P., Schlesinger, W.H. & Erisman, JW., (2008). Farming pollution. Nature Geoscience, 1: 409e411. https://doi.org/10.1038/ngeo236 google scholar
  • Bildirici, N. & Bildirici, D.E. (2021). Sağlıklı Bir Gelecek İçin Akuaponik Sistemler. Iksad Publications-2021, ISBN:978-605-74646-9-9 Ankara/ Türkiye. google scholar
  • Bohl, M. 1977, Some initial aquaculture experiments in recirculating water systems. Aquaculture, 11: 323-328. https://doi.org/10.1016/0044-8486(77)90081-3 google scholar
  • Bon, H., Parrot, L. & Moustier, P. (2010). Sustainable urban agriculture in developing countries. A review. Agronomy for Sustainable Development, 30: 21-32. https://doi.org/10.1051/agro:2008062 google scholar
  • Boyd, C.E. (2015). Overview of aquaculture feeds: global impacts of ingredient use. Feed and Feeding Practices in Aquaculture, 3-25. https://doi.org/10.1016/B978-0-08-100506-4.00001-5 google scholar
  • Bringezu, S., Schütz, H., Pengue, W., O’Brien, M., Garcia, F., Sims, R., Howarth, R.W., Kauppi, L., Swilling, M. & Herrick, J. (2014). Assessing global land use: balancing consumption with sustainable supply. United Nations Environment Programme, Nairobi. google scholar
  • Canfield, D.E., Glazer, A.N. & Falkowski, P.G. (2010). The evolution and future of Earth’s nitrogen cycle. Science, 330(6001): 192-196. https://doi.org/10.1126/science.1186120 google scholar
  • Capriolo, M., Marzoli, A., Aradi, L.E., Callegaro, S., Dal Corso, J., Newton, R. J., ... & Szabo, C. (2020). Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 11(1): 1670. https:// doi.org/10.1038/s41467-020-15325-6 google scholar
  • Carballo, E., Eer, A.V., Chie, T.V. & Hilbrands, A. (2008). Small-scale freshwater fish farming. Agromisa/ CTA. google scholar
  • Carlsson, A. (1997). Greenhouse gas emissions in the life-cycle of carrots and tomatoes. Methods, data and results from a study of the types and amounts of carrots and tomatoes consumed in Sweden. With arable land use. Lund University, Sweden. google scholar
  • Cerozi, B.S. & Fitzsimmons, K. (2016). The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresource Technology, 219: 778-781. https://doi.org/10.1016/j.biorte-ch.2016.08.079 google scholar
  • Coche, A. (1967). Fish culture in rice fields a world-wide synthesis. Hydrobiologia 30: 1-44. https://doi. org/10.1007/BF00135009 google scholar
  • Delaide, B., Goddek, S., Gott, J., Soyeurt, H. & Jijakli, M.H. (2016). Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water, 8(10): 467. https://doi.org/10.3390/w8100467 google scholar
  • Dos Santos, M.J.P.L. (2016). Smart cities and urban areas-aquaponics as innovative urban agriculture. Urban for Urban Green, 20: 402-406. https://doi.org/10.1016/j.ufug.2016.10.004 google scholar
  • Edwards, D. (1989). Technological aspects of coldwater fish culture. In Training Course in Coldwater Fish Culture, Kalerdasht (Iran), 18 Jan-3 Mar 1988. google scholar
  • Ehrlich, P.R. & Harte, J. (2015). Opinion: to feed the world in 2050 will require a global revolution. Proceedin-gs of the National Academy of Sciences of the United States of America, 112: 14743-14744. https://doi. org/10.1073/pnas.1519841112 google scholar
  • FAO, IFAD, UNICEF, WFP & WHO (2022). The State of Food Security and Nutrition in the World 2022. Repurposing food and agricultural policies to make healthy diets more affordable. Rome, FAO. https://doi. org/10.4060/cc0639en google scholar
  • Forchino, A.A., Lourguioui, H., Brigolin, D. & Pastres, R. (2017) Aquaponics and sustainability: The comparison of two different aquaponic techniques using the Life Cycle Assessment (LCA). Aquacultural Engineering, 77: 80-88.https://doi.org/10.1016/j.aquaeng.2017.03.002 google scholar
  • Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., Sheppard, L.J., Jenkins, A., Grizzetti, B., Galloway, J.N., Vitousek, P., Leach, A., Bouwman, A.F., Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M. & Voss, M. (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transa-ctions of the Royal Society B: Biological Sciences, 368. https://doi.org/10.1098/rstb.2013.0164 google scholar
  • Goddek, S. & Keesman, K.J. (2018). The necessity of desalination technology for designing and sizing multi-lo-op aquaponics systems. Desalination, 428: 76-85.https://doi.org/10.1016/j.desal.2017.11.024 google scholar
  • Goddek, S., Joyce, A., Kotzen, B. & Burnell, G.M. (2019). Aquaponics food production systems: combined aquaculture and hydroponic production technologies for the future (p. 619). Springer Nature. https://doi. org/10.1007/978-3-030-15943-6 google scholar
  • Goddek, S., Schmautz, Z., Scott, B., Delaide, B., Keesman, K. J., Wuertz, S. & Junge, R. (2016). The effect of anaerobic and aerobic fish sludge supernatant on hydroponic lettuce. Agronomy, 6(2): 37. https://doi. org/10.3390/agronomy6020037 google scholar
  • Groenveld, T., Kohn, Y.Y., Gross, A. & Lazarovitch, N. (2019). Optimization of nitrogen use efficiency by means of fertigation management in an integrated aquaculture-agriculture system. Journal of Cleaner Production, 212: 401-408. https://doi.org/10.1016/j.jclepro.2018.12.031 google scholar
  • Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K.W.T., Vitousek, P.M. & Zhang, F.S., (2011). Significant acidification in major Chinese croplands. Science, 327: 1008e1010. https://doi.org/10.1126/science.1182570 google scholar
  • Hollmann, R.E. (2013). An aquaponics life cycle assessment: evaluating an ınovative method for growing local fish and lettuce [Master Thesis]. University of Denver. google scholar
  • Hui, S.C.M. (2011). Green roof urban farming for buildings in high-density urban cities. In: World Green Roof Conference. pp 1-9. google scholar
  • Hundley, G.C., Navarro, F.K.S.P., Ribeiro Filho, O.P. & Navarro, R.D. (2018) Integration of Nile tilapia (Oreo-chromis niloticus L.) production Origanum majorana L. and Ocimum basilicum L. using aquaponics tech-nology. Acta Scientiarum Technology, 40. https://doi.org/10.4025/actascitechnol.v40i1.35460 google scholar
  • Joyce, A., Goddek, S., Kotzen, B. & Wuertz, S. (2019). Aquaponics: Closing the Cycle on Limited Water, Land and Nutrient Resources. In: Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M. (eds) Aquaponics Food Pro-duction Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-15943-6_2 google scholar
  • Junge, R., König, B., Villarroel, M., Komives, T. & Haıssam Jijakli, M. (2017). Strategic points in aquaponics. Water, 9. https://doi.org/10.3390/w9030182 google scholar
  • Kargın, H. & Bilgüven, M. (2018). Akuakültürde akuaponik sistemler ve önemi. Bursa Uludağ Üniveristesi Ziraat Fakültesi Dergisi, 32(2): 159-173. google scholar
  • Keating, B.A., Herrero, M., Carberry, P.S., Gardner, J. & Cole, M.B. (2014). Food wedges: framing the global food demand and supply challenge towards 2050. Global Food Security, 3(3-4): 125-132. https://doi.or-g/10.1016/j.gfs.2014.08.004 google scholar
  • Khakyzadeh, V., Luque, R., Zolfigol, M.A., Vahidian, H.R., Salehzadeh, H., Moradi, V., Soleymani, A.R., Moo-savi-Zare, A.R., Xu, K., (2015) Waste to wealth: a sustainable aquaponic system based on residual nitrogen photoconversion. Royal Society of Chemistry, 5: 3917-3921. https://doi.org/10.1039/C4RA15242E google scholar
  • Kotzen, B., Emerenciano, M.G.C., Moheimani, N. & Burnell, G.M. (2019). Aquaponics: Alternative Types and Approaches. In: Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M. (eds) Aquaponics Food Production Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-15943-6_12 google scholar
  • König, B., Janker, J., Reinhardt, T., Villarroel, M. & Junge, R. (2018). Analysis of aquaponics as an emerging technological innovation system. Journal of Cleaner Production, 180: 232-243. https://doi.org/10.1016/j. jclepro.2018.01.037 google scholar
  • Krupa, S.V., (2003). Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environmental Pollution, 124: 179e221. https://doi.org/10.1016/S0269-7491(02)00434-7 google scholar
  • Kurrer, C. & Tarlton, J. (2018) European Parliament, Directorate-General for Parliamentary Research Services, Kurrer, C., Tarlton, J., Ten more technologies which could change our lives: in-depth analysis, Kurrer, C. (editor), Tarlton, J. (editor), European Parliament. google scholar
  • Lee, J. (2015). Practical applications of low-pressure hydrocyclone (LPH) for feed waste and fecal solid remo-val in a recirculating aquaculture system. Aquacultural Engineering, 69: 37-42. https://doi.org/10.1016/j. aquaeng.2015.08.003 google scholar
  • Lemos, M.C. & De Oliveira, J.L.F. (2004) Can water reform survive politics? Institutional change and river basin management in Ceara, Northeast Brazil. World Development, 32(12): 2121-2137. https://doi.org/10.1016Zj. worlddev.2004.08.002 google scholar
  • Love, D. C., Uhl, M. S. & Genello, L. (2015a). Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquacultural Engineering, 68: 19-27. https://doi.org/10.1016/j.aquaeng.2015.07.003 google scholar
  • Love, D.C., Fry, J.P., Genello, L., Hill, E.S., Frederick, J.A., Li, X. & Semmens, K. (2014). An international survey of aquaponics practitioners. PloS One, 9(7): e102662. https://doi.org/10.1371/journal.pone.0102662 google scholar
  • Love, D.C., Fry, J.P., Li, X., Hill, E.S., Genello, L., Semmens, K. & Thompson, R.E. (2015b). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, 435: 67-74. https://doi.org/10.1016/j.aquaculture.2014.09.023 google scholar
  • Maucieri, C., Nicoletto, C., Os, E.V., Anseeuw, D., Havermaet, R.V. & Junge, R. (2019). Hydroponic Techno-logies. In: Goddek, S., Joyce, A., Kotzen, B. & Burnell, G.M. (eds) Aquaponics Food Production Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-15943-6_4 google scholar
  • McKinnon, A. (2007). CO2 Emissions from Freight Transport in the UK. Climate Change Working Group of the Commission for Integrated Transport, 57: 35-42. google scholar
  • Mears, D.R. & Both, A. J., (2001). A positive pressure ventilation system with insect screening for tropical and subtropical greenhouse facilities. In International Symposium on Design and Environmental Control of Tropical and Subtropical Greenhouses, 578: 125-132. https://doi.org/10.17660/ActaHortic.2002.578.14 google scholar
  • Memiş, D., Tunçelll, G., Tinkir, M. & Erk, M.H. (2023). Investigation of different lighting (LED, HPS and FLO) in aquaponics systems for joint production of different plants (Lettuce, Parsley and Cress) and koi carp. Aquatic Research, 6(1): 43-51. https://doi.org/10.3153/AR23005 google scholar
  • Mollison, B. & Holmgren, D. (1981). Permaculture One: A Perennial Agricultural System for Human Settle-ments: International Tree Crop Institute USA. google scholar
  • Monsees, H., Keitel, J., Paul, M., Kloas, W. & Wuertz, S. (2017). Potential of aquacultural sludge treatment for aquaponics: evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquaculture Environment Interactions, 9: 9-18. https://doi.org/10.3354/aei00205 google scholar
  • Onbirinci Kalklnma Planl (2019). Türkiye Cumhuriyeti Strateji ve Bütçe Başkanllğl 100. Yll Türkiye Pla-nl. TBMM Meclis Karar No: 1225, Karar Tarihi 18/07/2019. https://www.sbb.gov.tr/wp-content/uploa-ds/2022/07/On_Birinci_Kalkinma_Plani-2019-2023.pdf google scholar
  • Palm, H.W., Knaus, U., Appelbaum, S., Strauch, S.M. & Kotzen, B. (2019). Coupled Aquaponics Systems. In: Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M. (eds) Aquaponics Food Production Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-15943-6_7 google scholar
  • Pinho, S.M., David, L.H.C., Goddek, S., Emerenciano, M. G. & Portella, M.C. (2021). Integrated production of Nile tilapia juveniles and lettuce using biofloc technology. Aquaculture International, 29(1): 37-56. https:// doi.org/10.1007/s10499-020-00608-y google scholar
  • Portmann, R.W., Daniel, J.S. & Ravishankara, A.R., (2012). Stratospheric ozone depletion due to nitrous oxide: influences of other gases. Philosophical Transactions of the Royal Society B: Biological Sciences, 367: 1256e1264. https://doi.org/10.1098/rstb.2011.0377 google scholar
  • Rakocy, E. (2012). Aquaponics-Integrating Fish and Plant Culture. Oxford, UK: WileyBlackwell. 344-386. https://doi.org/10.1002/9781118250105.ch14 google scholar
  • Rakocy, J.E., Bailey, D.S., Shultz, R.C. & Thoman, E.S. (2004). Update on tilapia and vegetable production in the UVI aquaponic system. In New dimensions on farmed Tilapia: proceedings of the sixth international symposium on Tilapia in Aquaculture, held September, pp. 12-16. google scholar
  • Rakocy, J.E., Masser, M.P. & Losordo, T.M. (2006). Recirculating aquaculture tank production systems: aqua-ponics-integrating fish and plant culture. Southern Regional Aquaculture Center Publication, 454: 16. google scholar
  • Raven, P.H. & Wagner, D.L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences, 118(2): e2002548117. https://doi. org/10.1073/pnas.2002548117 google scholar
  • Ravishankara, A.R., Daniel, J.S. & Portmann, R.W. (2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326(5949): 123-125. https://doi.org/10.1126/science.1176985 google scholar
  • Read, P., Fernandes, T. & Miller, K., (2001). The derivation of scientific guidelines for best environmental pra-ctice for the monitoring and regulation of marine aquaculture in Europe. Journal of Applied Ichthyology, 17: 146-152. https://doi.org/10.1046/j.1439-0426.2001.00311.x google scholar
  • Robaina, L., Pirhonen, J., Mente, E., Sanchez, J. & Goosen, N. (2019). Fish Diets in Aquaponics. In: Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M. (eds) Aquaponics Food Production Systems. Springer, Cham. https:// doi.org/10.1007/978-3-030-15943-6_13 google scholar
  • Samuel-Fitwi, B., Wuertz, S., Schroeder, J.P. & Schulz, C., (2012). Sustainability assessment tools to sup-port aquaculture development. Journal of Cleaner Production, 32: 183-192. https://doi.org/10.1016/j.jc-lepro.2012.03.037 google scholar
  • Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M., Roy, S.L., Jones, J.L. & Griffin, P.M. (2011). Foodborne illness acquired in the United States-major pathogens. Emerging Infectious Diseases., 17(1): 7-15. https://doi.org/10.3201/eid1701.P11101 google scholar
  • Schmidhuber, J. (2010). FAO’s long-term outlook for global agriculture-challenges, trends and drivers. Interna-tional Food & Agriculture Trade Policy Council. google scholar
  • Seawright, D.E., Stickney, R.R. & Walker, R.B. 1998. Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture, 160(3-4): 215-237. https://doi.org/10.1016/S0044-8486(97)00168-3 google scholar
  • Somerville, C., Cohen, M., Pantanella, E., Stankus, A. & Lovatelli, A. (2014). Small-scale aquaponic food production. Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper No. 589. Rome, FAO. 262 pp. google scholar
  • Timmons, M.B. & Ebeling, J.M. (2010). Recirculating Aquaculture, 2nd ed. NRAC Publication NO. 01-007. Cayuga Aqua Ventures, Ithaca, NY. google scholar
  • Todd, J. (1980). Dreaming in my own backyard. The Journal of the New Alchemists, 6: 108-111. google scholar
  • Tumova, V. & Kalous, L. (2018). Running an outdoor cold water aquaponics operation in the Czech Republic. 10th Workshop on biodiversity, Jevany, Czech Republic, 69-76, ISBN 978-80-213-2910-2. google scholar
  • Tunçelli, G. (2022). Akuaponik sistemde gökkuşağı alabalıklarının (Oncorhynchus mykiss) yüzme aktivitesinin su kalitesi, balık ve bitki büyüme performansına etkisi [Doktora Tezi]. İstanbul Üniversitesi Fen Bilimleri Enstitüsü Su Ürünleri Yetiştiriciliği. google scholar
  • Tunçelli, G., Tunçelli, İ.C. & Memiş, D. (2023). Evaluation of lettuce (Lactuca sativa L.) in aquaponic system in terms of food safety. Ege Journal of Fisheries and Aquatic Sciences, 40(1): 27-34. https://doi.org/10.12714/egejfas.40.1.04 google scholar
  • Tyson, R. V., Simonne, E. H., Treadwell, D. D., White, J. M. & Simonne, A. (2008). Reconciling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters. HortScience, 43(3): 719-724. https://doi.org/10.21273/HORTSCI.43.3.719 google scholar
  • UN, (2013). Human development report 2013. Retrieved March 9, 2023, from https://hdr.undp.org/system/files/ documents/global-report-document/hdr2013encompletepdf.pdf google scholar
  • Van Der Esch, S. (2017). Exploring future changes in land use and land condition and the impacts on food, water, climate change and biodiversity: scenarios for the UNCCD Global Land Outlook. google scholar
  • White, P.J., (2012). Ion uptake mechanisms of individual cells and roots: short- distance transport. In: Marschner, P. (Ed.), Marschner’s Mineral Nutrition of Higher Plants. Academic Press, London, pp. 7-47. https://doi. org/10.1016/B978-0-12-384905-2.00002-9 google scholar
  • Wortman, S.E. (2015). Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Scientia Horticulturae, 194: 34-42. https://doi.org/10.1016/j.scien-ta.2015.07.045 google scholar
  • Zou, Y., Hu, Z., Zhang, J., Guimbaud, C., Wang, Q. & Fang, Y. (2016a). Effect of seasonal variation on nit-rogen transformations in aquaponics of northern China. Ecological Engineering, 94: 30-36. https://doi. org/10.1016/j.ecoleng.2016.05.063 google scholar
  • Zou, Y., Hu, Z., Zhang, J., Xie, H., Guimbaud, C. & Fang, Y. (2016b). Effects of pH on nitrogen transfor-mations in media-based aquaponics. Bioresource Technology, 210: 81-87. https://doi.org/10.1016/j.biorte-ch.2015.12.079 google scholar
  • Zweig, R.D. (1986). An integrated fish culture hydroponic vegetableproduction system. Aquaculture Magazine, 34-40. google scholar


PAYLAŞ




İstanbul Üniversitesi Yayınları, uluslararası yayıncılık standartları ve etiğine uygun olarak, yüksek kalitede bilimsel dergi ve kitapların yayınlanmasıyla giderek artan bilimsel bilginin yayılmasına katkıda bulunmayı amaçlamaktadır. İstanbul Üniversitesi Yayınları açık erişimli, ticari olmayan, bilimsel yayıncılığı takip etmektedir.