Research Article


DOI :10.26650/EurJBiol.2019.0011   IUP :10.26650/EurJBiol.2019.0011    Full Text (PDF)

Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species

Nermin Hande AvcıoğluIşıl Seyis Bilkay

Objective: In this study, cyanide containing wastewaters of electroplating, metal plating and gold mining industries were selected in order to investigate the usability of Klebsiella pneumoniae and Klebsiella oxytoca. Materials and Methods: In order to investigate their cyanide removal capability K. pneumoniae and K. oxytoca cultures both, separately and with sterile crude extracts were used. Results: It is observed that cyanide in electroplating wastewater was effectively removed by the cultures and sterile crude extracts of K. pneumoniae (both 100%) and K. oxytoca (100% and 70%, respectively). Additionally, culture of K. pneumoniae, mixture of K. pneumoniae and K. oxytoca cultures, sterile crude extract of K. oxytoca and mixture of K. pneumoniae and K. oxytoca sterile crude extracts degraded cyanide efficiently (94%, 96%, 90% and 93%, respectively) in metal plating wastewater. Conclusion: It is determined that K. pneumoniae and K. oxytoca cultures and crude extracts can be a promising alternative for cyanide removal in wastewaters of different industries. Keywords: Klebsiella pneumoniae, Klebsiella oxytoca, cyanide, wastewater, biodegradation

PDF View

References

  • 1. Ebbs S. Biological degradation of cyanide compounds. Curr Opin Biotechnol 2004; 15(3): 231-36. google scholar
  • 2. Kao CM, Liu JK, Lou HR, Lin CS, Chen SC. Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 2003; 50(8): 1055-61. google scholar
  • 3. Chatpawala KD, Babu GRV, Vijaya OK, Kumar KP, Wolfram JH. Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilized cells of Pseudomonas putida. J Ind Microbiol Biot 1998; 20(1): 28-33. google scholar
  • 4. Kao CM, Lin CC, Liu JK, Chen YL, Wu LT, Chen SC. Biodegradation of the metal-cyano complex tetracyanonickelate (II) by Klebsiella oxytoca. Enzyme Microb Tech 2004; 35(5): 405-10. google scholar
  • 5. Chen CY, Kao CM, Chen SC. Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater. Chemosphere 2008; 71(1): 133-39. google scholar
  • 6. Kang DH, Hong LY, Schwab AP, Banks MK. Removal of prussian blue from contaminated soil in the rhizosphere of cyanogenic plants. Chemosphere 2007; 69(9): 1492-98. google scholar
  • 7. Yu XZ, Gu JD. Effect of temperature on removal of iron cyanides from solution by maize plants. Environ Sci Pollut R 2010; 17(1): 106-14. google scholar
  • 8. Gomes NCM, Camargos EMS, Dias JCT, Figueira MM, Linardi VR. Accumulation and recovery of metals by Aspergillus niger in cyanide-containing solutions from gold mining. Int Biodeter Biodegr 1996; 37: 132. google scholar
  • 9. Kwon HK, Woo SH, Park JM. Degradation of tetracyanonickelate (II) by Cryptococcus humicolus MCN2. FEMS Microbiol Lett 2002; 214(2): 211-16. google scholar
  • 10. Cluness MJ, Turner PT, Clements E, Brown, DT, & O’Reilly C. Purification and properties of cyanide hydratase from Fusarium lateritium and analysis of the corresponding chy1 gene. J Gen Microbiol 1993; 139(8): 1807-15. google scholar
  • 11. Nolan LM, Harnedy PA, Turner P, Hearne AB, O’Reilly C. The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity. FEMS Microbiol Lett 2003; 221(2): 161-65. google scholar
  • 12. Yanase H, Sakamoto A, Okamoto K, Kita K, Sato Y. Degradation of the metal-cyano complex tetracyanonickelate (II) by Fusarium oxysporum N-10. Appl Microbiol Biot 2000; 53(3): 328-34. google scholar
  • 13. Pereira PT, Arrabaça JD, Amaral-Collaço MT. Isolation, selection and characterization of a cyanide-degrading fungus from an industrial effluent. Int Biodeter Biodegr 1996; 37 (1-2): 45-52. google scholar
  • 14. Dumestre E, Chare T, Portal J, Gerard M, Berthelin J. Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils. Appl Environ Microb 1997; 63(7): 2729-34. google scholar
  • 15. Barclay M, Tett VA, Knowles CJ. Metabolism and enzymology of cyanide metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions. Enzyme Microb Tech 1998; 23(5): 321-30. google scholar
  • 16. Aksu Z, Çalık A, Dursun AY, Demircan Z. Biosorption of iron (III) cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms. Process Biochem 1999; 34(5): 483-91. google scholar
  • 17. Gurbuz F, Ciftci H, Akcil A. Biodegradation of cyanide containing effluents by Scenedesmus obliquus. J Hazard Mater 2009; 162(1): 74-79. google scholar
  • 18. Ezzi MI, Lynch JM. Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme Microb Tech 2005; 36(7):849–54. google scholar
  • 19. Ricano-Rodriguez J, Ramirez-Lepe M. Purification and characterization of a cyanide-degrading nitrilase from Trichoderma harzianum VSL291. Turk J Biol 2015; 39: 248-57. google scholar
  • 20. Potivichayanon S, Kitleartpornpairoat R. Biodegradation of cyanide by a novel cyanide-degrading bacterium. World Acad Sci Eng Technol 2010; 42:1362-65. google scholar
  • 21. Kaewkannetra P, Imai T, Garcia-Garcia FJ, Chiu TY. Cyanide removal from cassava mill wastewater using Azotobacter vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system. J Hazard Mater 2009; 172(1): 224-28. google scholar
  • 22. Perumal M, Prabakaron JJ, Kamaraj M. Isolation and characterization of potential cyanide degrading Bacillus nealsonii from different industrial effluents. Int J Chem Tech Res 2013; 5: 2357-64. google scholar
  • 23. Santoshkumar M, Veeranagouda Y, Lee K, Karegoudar TB. Utilization of aliphatic nitrile by Paracoccus sp. SKG isolated from chemical waste samples. Int Biodeter Biodegr 2011; 65(1):153-59. google scholar
  • 24. Dursun AY, Çalık A, Aksu Z. Degradation of ferrous (II) cyanide complex ions by Pseudomonas fluorescens. Process Biochem 1999; 34(9): 901-8. google scholar
  • 25. Harris R, Knowles CJ. Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen. J Gen Microbiol 1983; 129:1005-11. google scholar
  • 26. Kunz DA, Nagappan O, Silva-Alvalos J, Delong GT. Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764, Evidence for multiple pathways of metabolic conversion. Appl Environ Microb 1992; 58(6):2022-29. google scholar
  • 27. Maniyam MN, Sjahrir F, Ibrahim AL. Bioremediation of cyanide by optimized resting cells of Rhodococcus strains isolated from Peninsular Malaysia. Int J Biol Sci 2011; 1(2): 98-101. google scholar
  • 28. Maniyam MN, Sjahrir F, Ibrahim AL, Cass AEG. Cyanide degradation by immobilized cells of Rhodococcus UKMP-5M. Biologia 2012; 67(5): 837-44. google scholar
  • 29. Kumar V, Bhalla TC. In vitro cyanide degradation by Serratia marcescens RL2b. Int J Environ Sci 2013; 3(6): 1969-79. google scholar
  • 30. Ibrahim KK, Syed MA, Shukor MY, Ahmad SA. Effect of heavy metals on cyanide biodegradation by resting cells of Serratia marcescens strain AQ07. J Environ Microbiol Toxicol 2014; 2(2):58-60. google scholar
  • 31. Singh N, Agarwal B, Majumder CB. Comparative studies on simultaneous biodegradation of phenol and cyanide using different strains. Int J Eng Res Appl 2014; 4(3):827-31. google scholar
  • 32. Khamar Z, Makhdoumi-Kakhki A, Mahmudy Gharaie MH. Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture. Int Biodeter Biodegr 2015; 99: 123-28. google scholar
  • 33. Dash RD, Gaur A, Balomajumder C. Cyanide in industrial wastewaters and its removal: A review on bio treatment. J Hazard Mater 2009; 163(1):1-11. google scholar
  • 34. Avcioglu NH, Seyis Bilkay I. Biological Treatment of Cyanide by Using Klebsiella pneumoniae Species. Food Technol Biotech 2016; 54 (4), 450-54. google scholar
  • 35. Wong-Chong GM, Dzombak DA, Ghosh RS. Management of Cyanide in Industrial Process Wastewaters. 2006. In: Wong-Chong GM, Nakles DV, Dzombak D, editors. Cyanide in water and soil, chemistry, risk and management. Boca Raton: Taylor&Francis; p. 518-67. google scholar
  • 36. Fisher FB, Brown JS. Colorimetric determination of cyanide in stack gas and waste water. Anal Chem 1952; 24:1440-44. google scholar
  • 37. Greenberg AE, Clesceri LS, Eaton AD. Standard methods for the water and waste water. Denver, CO, USA: American Public Health Assosiation, American Water Works Assosiation, Water Environment Federation 1992; p.1137. google scholar
  • 38. Mirizadeh S, Yangmaei S, Nejad ZG. Biodegradation of cyanide by a new isolated strain under alkaline conditions and optimization by response surface methodology (RSM). J Environ Health Sci 2014; 12(85):1-9. google scholar
  • 39. Dwivedi N, Majumder CB, Mondal P, Dwivedi S. Biological treatment of cyanide containing waste water. Res J Chem Sci 2011; 1 (7) :15-21. google scholar
  • 40. Supromin N, Potivihayanon S, Toensakes R. Degradation of metalcyanide from real electroplating wastewater by mixed culture of SUTS1 and SUTS2. 3rd International conference on Biological Chemical and Environmental Sciences. Kuala Lumpur: Malazia. p. 2015; 75-80. google scholar
  • 41. Mekuto L, Jackson VA, Ntwampe SKO. Biodegradation of free cyanide using Bacillus sp. consortium dominated by Bacillus safensis, lichenformis and tequilensis strains: A bioprocess supported solely with whey. J Bioremed Biodeg 2013; 18: 1-7. google scholar
  • 42. Adjei MD, Ohta Y. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3. J Biosci Bioeng 2000; 89(3): 274-77. google scholar
  • 43. Patil YB, Paknikar KM. Development of a process for detoxification of metal cyanides from wastewaters. Process Biochem 2000; 35(10): 1139-51. google scholar
  • 44. Sankaranarayanan A, Gowthami M. Cyanide degradation by consortium of bacterial species isolated from sago industry effluent. J Environ Treat Tech 2015; 38(1):41-46. google scholar
  • 45. Nwokoro O, Dibua MEU. Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis. Arch Hig Rada Toxicol 2014; 65(1):113-19. google scholar
  • 46. Razanamahandry LC, Andrianisa HA, Karoui H, Kouakou KM, Yacouba H. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere 2016; 157: 71-78. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Avcıoğlu, N.H., & Seyis Bilkay, I. (2019). Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species. European Journal of Biology, 78(1), 5-10. https://doi.org/10.26650/EurJBiol.2019.0011


AMA

Avcıoğlu N H, Seyis Bilkay I. Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species. European Journal of Biology. 2019;78(1):5-10. https://doi.org/10.26650/EurJBiol.2019.0011


ABNT

Avcıoğlu, N.H.; Seyis Bilkay, I. Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species. European Journal of Biology, [Publisher Location], v. 78, n. 1, p. 5-10, 2019.


Chicago: Author-Date Style

Avcıoğlu, Nermin Hande, and Işıl Seyis Bilkay. 2019. “Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species.” European Journal of Biology 78, no. 1: 5-10. https://doi.org/10.26650/EurJBiol.2019.0011


Chicago: Humanities Style

Avcıoğlu, Nermin Hande, and Işıl Seyis Bilkay. Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species.” European Journal of Biology 78, no. 1 (May. 2024): 5-10. https://doi.org/10.26650/EurJBiol.2019.0011


Harvard: Australian Style

Avcıoğlu, NH & Seyis Bilkay, I 2019, 'Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species', European Journal of Biology, vol. 78, no. 1, pp. 5-10, viewed 19 May. 2024, https://doi.org/10.26650/EurJBiol.2019.0011


Harvard: Author-Date Style

Avcıoğlu, N.H. and Seyis Bilkay, I. (2019) ‘Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species’, European Journal of Biology, 78(1), pp. 5-10. https://doi.org/10.26650/EurJBiol.2019.0011 (19 May. 2024).


MLA

Avcıoğlu, Nermin Hande, and Işıl Seyis Bilkay. Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species.” European Journal of Biology, vol. 78, no. 1, 2019, pp. 5-10. [Database Container], https://doi.org/10.26650/EurJBiol.2019.0011


Vancouver

Avcıoğlu NH, Seyis Bilkay I. Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species. European Journal of Biology [Internet]. 19 May. 2024 [cited 19 May. 2024];78(1):5-10. Available from: https://doi.org/10.26650/EurJBiol.2019.0011 doi: 10.26650/EurJBiol.2019.0011


ISNAD

Avcıoğlu, NerminHande - Seyis Bilkay, Işıl. Cyanide Removal in Electroplating, Metal Plating and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species”. European Journal of Biology 78/1 (May. 2024): 5-10. https://doi.org/10.26650/EurJBiol.2019.0011



TIMELINE


Submitted24.07.2018
Accepted19.10.2018
Published Online31.05.2019

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.