Research Article


DOI :10.26650/EurJBiol.2019.0034   IUP :10.26650/EurJBiol.2019.0034    Full Text (PDF)

Effects of Tempol in Lipopolysaccharide-Induced Liver Injury

Perihan Sinem SerinAslı KandilHuri BulutTuğba KaskavalcıErman Caner BulutCihan Demirci Tansel

Objective: Sepsis leads to conditions such as inflammatory and anti-inflammatory process, circulatory abnormalities, cellular and humoral reactions. Endotoxin-induced oxidative stress causes injury in the liver. The aim of this study was to evaluate the effects of a radical scavenger Tempol in lipopolysaccharide (LPS)-induced liver injury in rats. Materials and Methods: Male Wistar rats were divided into four groups: Control, LPS (15 mg/kg), LPS + Tempol group (100 mg/kg Tempol, three hours after LPS administration) and Tempol (100 mg/kg). Blood glucose and body temperature were measured during the experiment. Superoxide dismutase (SOD), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and C-reactive protein (CRP) levels were measured in plasma or liver tissue. Furthermore, histopathological changes and myeloperoxidase-stained leukocytes infiltration were assessed in liver tissue. Results: LPS caused tissue damage and leukocytes infiltration, increased AST, ALT and CRP levels, and decreased body temperature, blood glucose and SOD levels. Tempol reduced AST and ALT levels and increased SOD levels. Tempol did not prevent tissue damage, leukocytes infiltration and increment of CRP levels. There were no changes in body temperature and blood glucose levels. Conclusion: The present study suggests that tempol may have antioxidant properties in LPS-induced liver injury. These results may contribute to a better understanding of the role of tempol and basic mechanisms of underlying oxidative stressrelated liver injury for further investigations.

PDF View

References

  • 1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 2003; 29(4): 530-8. google scholar
  • 2. Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet 2005; 365(9453): 63-78. google scholar
  • 3. Minasyan H. Sepsis and septic shock: Pathogenesis and treatment perspectives. J Crit Care 2017; 40: 229-42. google scholar
  • 4. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013; 369(9): 840-51. google scholar
  • 5. Nesseler N, Launey Y, Aninat C, Morel F, Mallédant Y, Seguin P. Clinical review: The liver in sepsis. Crit Care 2012; 16(5):235. google scholar
  • 6. Woźnica EA, Inglot M, Woźnica RK, Łysenko L. Liver dysfunction in sepsis. Adv Clin Exp Med 2018; 27(4): 547-51. google scholar
  • 7. Koch A, Horn A, Dückers H, Yagmur E, Sanson E, Bruensing J, et al. Increased liver stiffness denotes hepatic dysfunction and mortality risk in critically ill non-cirrhotic patients at a medical ICU. Crit Care 2011; 15(6): 266. 8. Recknagel P, Gonnert FA, Westermann M, Lambeck S, Lupp A, Rudiger A, et al. Liver dysfunction and phosphatidylinositol-3kinase signalling in early sepsis: experimental studies in rodent models of peritonitis. PLoS Med 2012; 9(11): e1001338. 9. Wang P, Ayala A, Ba ZF, Zhou M, Perrin MM, Chaudry IH. Tumor necrosis factor-alpha produces hepatocellular dysfunction despite normal cardiac output and hepatic microcirculation. Am J Physiol1993; 265(1 Pt 1): G126-32. 10. Dhainaut JF, Marin N, Mignon A, Vinsonneau C. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med 2001; 29(7 Suppl): 42-7. 11. Garofalo AM, Lorente-Ros M, Goncalvez G, Carriedo D, BallénBarragán A, Villar-Fernández A, et al. Histopathological changes of organ dysfunction in sepsis. Intensive Care Med Exp 2019; 7(Suppl 1):45. google scholar
  • 12. Mannaa, FA, Abdel-Wahhab, KG. Physiological potential of cytokines and liver damages. Hepatoma Res 2016; 2: 131-43. google scholar
  • 13. Szabo G, Romics L Jr, Frendl G. Liver in sepsis and systemic inflammatory response syndrome. Clin Liver Dis 2002; 6(4): 104566. google scholar
  • 14. Strnad P, Tacke F, Koch A, Trautwein C. Liver - guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol 2017; 14(1): 55-66. google scholar
  • 15. Ring A, Stremmel W. The hepatic microvascular responses to sepsis. Semin Thromb Hemost 2000; 26(5): 589-94. google scholar
  • 16. Wong CH, Jenne CN, Petri B, Chrobok NL, Kubes P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol 2013; 14(8): 785-92. google scholar
  • 17. Komine S, Akiyama K, Warabi E, Oh S, Kuga K, Ishige K, et al. Exercise training enhances in vivo clearance of endotoxin and attenuates inflammatory responses by potentiating Kupffer cell phagocytosis. Sci Rep 2017; 7(1): 11977. google scholar
  • 18. Koo DJ, Chaudry IH, Wang P. Kupffer cells are responsible for producing inflammatory cytokines and hepatocellular dysfunction during early sepsis. J Surg Res 1999; 83(2): 151-7. google scholar
  • 19. McCuskey RS, Nishida J, McDonnell D. Effect of immunoglobulin G on the hepatic microvascular inflammatory response during sepsis. Shock 1996; 5 (1): 28-33. google scholar
  • 20. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995; 64: 97-112. google scholar
  • 21. Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 1989; 264(14): 7761-4. google scholar
  • 22. Samuni A, Krishna CM, Riesz P, Finkelstein E, Russo A. A novel metal-free low molecular weight superoxide dismutase mimic. J Biol Chem 1988; 263(34): 17921-4. google scholar
  • 23. Wilcox CS. Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther 2010; 126(2): 119-45. google scholar
  • 24. Schnackenberg CG, Welch WJ, Wilcox CS. Normalization of blood pressure and renal vascular resistance in SHR with a membranepermeable superoxide dismutase mimetic: role of nitric oxide. Hypertension 1998; 32(1): 59-64. google scholar
  • 25. Pınar N, Kaplan M, Özgür T, Özcan O. Ameliorating effects of tempol on methotrexate-induced liver injury in rats. Biomed Pharmacother 2018; 102: 758-64. google scholar
  • 26. Ergin B, Bezemer R, Kandil A, Demirci-Tansel C, Ince C. TEMPOL has limited protective effects on renal oxygenation and hemodynamics but reduces kidney damage and inflammation in a rat model of renal ischemia/reperfusion by aortic clamping. J Clin Transl Res 2015; 1(2): 1-13. google scholar
  • 27. Liaw WJ, Chen TH, Lai ZZ, Chen SJ, Chen A, Tzao C, et al. Effects of a membrane-permeable radical scavenger, Tempol, on intraperitoneal sepsis-induced organ injury in rats. Shock 2005; 23(1): 88-96. google scholar
  • 28. Wang W, Zolty E, Falk S, Summer S, Zhou Z, Gengaro P, et al. Endotoxemia-related acute kidney injury in transgenic mice with endothelial overexpression of GTP cyclohydrolase-1. Am J Physiol Renal Physiol 2008; 294(3): F571-6. google scholar
  • 29. Wang W, Jittikanont S, Falk SA, Li P, Feng L, Gengaro PE, et al. Interaction among nitric oxide, reactive oxygen species, and antioxidants during endotoxemia-related acute renal failure. Am J Physiol Renal Physiol 2003; 284(3): F532-7. google scholar
  • 30. Zacharowski K, Olbrich A, Cuzzocrea S, Foster SJ, Thiemermann C. Membrane-permeable radical scavenger, tempol, reduces multiple organ injury in a rodent model of gram-positive shock. Crit Care Med 2000; 28(6): 1953-61. google scholar
  • 31. Leach M, Frank S, Olbrich A, Pfeilschifter J, Thiemermann C. Decline in the expression of copper/zinc superoxide dismutase in the kidney of rats with endotoxic shock: effects of the superoxide anion radical scavenger, tempol, on organ injury. Br J Pharmacol 1998; 125(4): 817-25. google scholar
  • 32. Yuksel BC, Serdar SE, Tuncel A, Uzum N, Ataoglu O, Atan A, et al. Effect of tempol, a membrane-permeable radical scavenger, on mesenteric blood flow and organ injury in a murine cecal ligation and puncture model of septic shock. Eur Surg Res 2009; 43(2): 21927. google scholar
  • 33. Demirci C, Gargili A, Kandil A, Cetinkaya H, Uyaner I, Boynuegri B, et al. Inhibition of inducible nitric oxide synthase in murine visceral larva migrans: effects on lung and liver damage. Chin J Physiol 2006; 49(6): 326-34. google scholar
  • 34. Legrand M, Almac E, Mik EG, Johannes T, Kandil A, Bezemer R, et al. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 2009; 296(5): F1109-17. google scholar
  • 35. Lilley E, Armstrong R, Clark N, Gray P, Hawkins P, Mason K, et al. Refinement of animal models of sepsis and septic shock. Shock 2015; 43(4): 304-16. google scholar
  • 36. Muftuoglu MA, Aktekin A, Ozdemir NC, Saglam A. Liver injury in sepsis and abdominal compartment syndrome in rats. Surg Today 2006; 36(6): 519-24. google scholar
  • 37. Li G, Liu Y, Tzeng NS, Cui G, Block ML, Wilson B, et al. Protective effect of dextromethorphan against endotoxic shock in mice. Biochem Pharmacol 2005; 69(2): 233-40. google scholar
  • 38. Liu X, Liu R, Dai Z, Wu H, Lin M, Tian F, et al. Effect of Shenfu injection on lipopolysaccharide (LPS)-induced septic shock in rabbits. J Ethnopharmacol 2019; 234: 36-43. google scholar
  • 39. Sha J, Zhang H, Zhao Y, Feng X, Hu X, Wang C, et al. Dexmedetomidine attenuates lipopolysaccharide-induced liver oxidative stress and cell apoptosis in rats by increasing GSK-3β/MKP-1/Nrf2 pathway activity via the α2 adrenergic receptor. Toxicol Appl Pharmacol 2019; 364: 144-52. google scholar
  • 40. Zhou R, Chen SH, Li G, Chen HL, Liu Y, Wu HM, et al. Ultralow doses of dextromethorphan protect mice from endotoxin-induced sepsis-like hepatotoxicity. Chem Biol Interact 2019; 303: 50-6. google scholar
  • 41. Thiemermann C, Ruetten H, Wu CC, Vane JR. The multiple organ dysfunction syndrome caused by endotoxin in the rat: attenuation of liver dysfunction by inhibitors of nitric oxide synthase. Br J Pharmacol 1995; 116(7): 2845-51. google scholar
  • 42. Mészáros K, Lang CH, Bagby GJ, Spitzer JJ. Contribution of different organs to increased glucose consumption after endotoxin administration. J Biol Chem 1987; 262(23): 10965-70. google scholar
  • 43. Engin A, Zemheri M, Bukan N, Memiş L. Effect of nitric oxide on the hypoglycaemic phase of endotoxaemia. ANZ J Surg 2006; 76(6): 512-7. google scholar
  • 44. Wallington J, Ning J, Titheradge MA. The control of hepatic glycogen metabolism in an in vitro model of sepsis. Mol Cell Biochem 2008; 308(1-2): 183-92. google scholar
  • 45. Yelich MR, Witek-Janusek L. Glucose, lactate, insulin and somatostatin responses to endotoxin in developing rats. Shock 1994; 2: 438-44. google scholar
  • 46. Anavi S, Hahn-Obercyger M, Margalit R, Madar Z, Tirosh O. A novel antihypoglycemic role of inducible nitric oxide synthase in liver inflammatory response induced by dietary cholesterol and endotoxemia. Antioxid Redox Signal 2013; 19(16): 1889-901. google scholar
  • 47. Chang CK, Gatan M, Schumer W. Efficacy of anti-tumor necrosis factor polyclonal antibody on phosphoenolpyruvate carboxykinase expression in septic and endotoxemic rats. Shock 1996; 6(1): 57-60. google scholar
  • 48. Rello J, Valenzuela-Sánchez F, Ruiz-Rodriguez M, Moyano S. Sepsis: A review of advances in management. Adv Ther 2017; 34(11): 2393-411. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Serin, P.S., Kandil, A., Bulut, H., Kaskavalcı, T., Bulut, E.C., & Demirci Tansel, C. (2019). Effects of Tempol in Lipopolysaccharide-Induced Liver Injury. European Journal of Biology, 78(2), 147-155. https://doi.org/10.26650/EurJBiol.2019.0034


AMA

Serin P S, Kandil A, Bulut H, Kaskavalcı T, Bulut E C, Demirci Tansel C. Effects of Tempol in Lipopolysaccharide-Induced Liver Injury. European Journal of Biology. 2019;78(2):147-155. https://doi.org/10.26650/EurJBiol.2019.0034


ABNT

Serin, P.S.; Kandil, A.; Bulut, H.; Kaskavalcı, T.; Bulut, E.C.; Demirci Tansel, C. Effects of Tempol in Lipopolysaccharide-Induced Liver Injury. European Journal of Biology, [Publisher Location], v. 78, n. 2, p. 147-155, 2019.


Chicago: Author-Date Style

Serin, Perihan Sinem, and Aslı Kandil and Huri Bulut and Tuğba Kaskavalcı and Erman Caner Bulut and Cihan Demirci Tansel. 2019. “Effects of Tempol in Lipopolysaccharide-Induced Liver Injury.” European Journal of Biology 78, no. 2: 147-155. https://doi.org/10.26650/EurJBiol.2019.0034


Chicago: Humanities Style

Serin, Perihan Sinem, and Aslı Kandil and Huri Bulut and Tuğba Kaskavalcı and Erman Caner Bulut and Cihan Demirci Tansel. Effects of Tempol in Lipopolysaccharide-Induced Liver Injury.” European Journal of Biology 78, no. 2 (Nov. 2024): 147-155. https://doi.org/10.26650/EurJBiol.2019.0034


Harvard: Australian Style

Serin, PS & Kandil, A & Bulut, H & Kaskavalcı, T & Bulut, EC & Demirci Tansel, C 2019, 'Effects of Tempol in Lipopolysaccharide-Induced Liver Injury', European Journal of Biology, vol. 78, no. 2, pp. 147-155, viewed 8 Nov. 2024, https://doi.org/10.26650/EurJBiol.2019.0034


Harvard: Author-Date Style

Serin, P.S. and Kandil, A. and Bulut, H. and Kaskavalcı, T. and Bulut, E.C. and Demirci Tansel, C. (2019) ‘Effects of Tempol in Lipopolysaccharide-Induced Liver Injury’, European Journal of Biology, 78(2), pp. 147-155. https://doi.org/10.26650/EurJBiol.2019.0034 (8 Nov. 2024).


MLA

Serin, Perihan Sinem, and Aslı Kandil and Huri Bulut and Tuğba Kaskavalcı and Erman Caner Bulut and Cihan Demirci Tansel. Effects of Tempol in Lipopolysaccharide-Induced Liver Injury.” European Journal of Biology, vol. 78, no. 2, 2019, pp. 147-155. [Database Container], https://doi.org/10.26650/EurJBiol.2019.0034


Vancouver

Serin PS, Kandil A, Bulut H, Kaskavalcı T, Bulut EC, Demirci Tansel C. Effects of Tempol in Lipopolysaccharide-Induced Liver Injury. European Journal of Biology [Internet]. 8 Nov. 2024 [cited 8 Nov. 2024];78(2):147-155. Available from: https://doi.org/10.26650/EurJBiol.2019.0034 doi: 10.26650/EurJBiol.2019.0034


ISNAD

Serin, PerihanSinem - Kandil, Aslı - Bulut, Huri - Kaskavalcı, Tuğba - Bulut, ErmanCaner - Demirci Tansel, Cihan. Effects of Tempol in Lipopolysaccharide-Induced Liver Injury”. European Journal of Biology 78/2 (Nov. 2024): 147-155. https://doi.org/10.26650/EurJBiol.2019.0034



TIMELINE


Submitted20.09.2019
Accepted29.11.2019
Published Online06.12.2019

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.