Review Article


DOI :10.26650/EurJBiol.2025.1594126   IUP :10.26650/EurJBiol.2025.1594126    Full Text (PDF)

Enhancing Recombinant Protein Production by Optimising Nutrient Replenishment, Light, and Humidity in a Nicotiana benthamiana Bioreactor

Damla YükselGunel YusifovaAysu Shovket HasanovaTarlan Mamedov

 In the past three decades, plant expression systems have been used and found efficient for the production of a variety of recombinant proteins, such as vaccines, therapeutic proteins, enzymes, and antibodies. They have several advantages over other expression systems, such as bacterial, mammalian, and yeast expression systems, in terms of cost-efficiency, speed of the process, ability to make complex proteins, safety (low risk of human contamination), high productivity, and scalability. Plants as bioreactors are capable of producing the desired recombinant proteins with complex structures. High levels of target protein expression in plants are critical for cost-effective pharmaceutical production. Therefore, it is important to develop strategies to increase the expression of target proteins. The expression of recom binant proteins in plants can be influenced by a variety of environmental factors, including nutrients, light, and humidity; therefore, a strategy to optimise their performance efficiency is required. In addition, the amount of different types of nutrients in the medium significantly affects the productivity of the expression process. In this review, we briefly discuss the effects of nutrients, humidity, and light on recombinant protein expression in Nicotiana benthamiana.


PDF View

References

  • Yusibov MV, Mamedov TG. Plants as an alternative sYstem for expression of vaccine antigens. Proc ANAS (Biol Sci). 2010;65:195-200. google scholar
  • Gun N, Mamedov T. Flexible approaches are required for successful production of recombinant proteins in plants. Med Science. 2022;11(1):1.doi:10.5455/ medscience.2021.07.242 google scholar
  • Nandi S, Kwong AT, Holtz BR, Erwin RL, Marcel S, McDonald KA. Techno-economic analYsis of a transient plant-based platform for monoclonal antibodY production. MAbs. 2016;8(8):1456-1466. google scholar
  • BallY J, Jung H, Mortimer C, et al. The rise and rise of Nicotiana benthamiana : A plant for all reasons. Annu Rev Phytopathol. 2018;56(1):405-426. google scholar
  • Goulet MC, Gaudreau L, Gagne M, et al. Production of biopharmaceuticals in Nicotiana benthamiana—AxillarY stem growth as a keY determinant of total protein Yield. Front Plant Sci. 2019;10:735. doi:10.3389/fpls.2019.00735 google scholar
  • Farrance CE, Chichester JA, MusiYchuk K, et al. Antibodies to plant-produced Plasmodium falciparum sexual stage protein Pfs25 exhibit transmission blocking activitY. Hum Vaccin. 2011;7(sup1):191-198. google scholar
  • Shoji Y, ProkhnevskY A, Leffet B, et al. ImmunogenicitY of H1N1 influenza virus-like particles produced in Nicotiana benthamiana. Hum Vaccin Immunother. 2015;11(1):118-123. google scholar
  • Mamedov T, Chichester JA, Jones RM, et al. Production of functionallY active and immunogenic non-glYcosYlated protective antigen from Bacillus anthracis in Nicotiana benthamiana bY co-expression with peptide-n-glYcosidase f (PNGase F) of Flavobacterium meningosepticum. PLoS One. 2016;11(4):e0153956. doi:10.1371/journal.pone.0153956 google scholar
  • Mamedov T, Cicek K, Gulec B, Ungor R, Hasanova G. In vivo production of non-glYcosYlated recombinant proteins in Nicotiana benthamiana plants bY co-expression with Endo-p-N-acetYlglucosaminidase H (Endo H) of Streptomyces plicatus. PLoS One. 2017;12(8):e0183589. doi:10.1371/journal.pone.0183589 google scholar
  • Mamedov T, Cicek K, Miura K, et al. A Plant-produced in vivo deglYcosYlated full-length Pfs48/45 as a transmission-blocking vaccine candidate against malaria. Sci Rep. 2019;9(1):9868. doi:10.1038/s41598-019-46375-6 google scholar
  • Mamedov T, MusaYeva I, Acsora R, et al. Engineering, and production of functionallY active human Furin in N. benthamiana plant: In vivo post-translational processing of target proteins bY Furin in plants. PLoS One. 2019;14(3):e0213438. doi:10.1371/journal.pone.0213438 google scholar
  • Mamedov T, Yuksel D, Ilgın M, et al. Plant-produced glYcosYlated and in vivo deglYcosYlated receptor binding domain proteins of SARS-CoV-2 induce potent neutralizing responses in mice. Viruses. 2021;13(8):1595. doi:10.3390/ v13081595 google scholar
  • Mamedov T, Gurbuzaslan I, Yuksel D, et al. Soluble human angiotensin-converting enzYme 2 as a potential therapeutic tool for COVID-19 is produced at high levels in Nicotiana benthamiana plant with potent anti-SARS-CoV-2 activity. Front Plant Sci. 2021;12:742875. doi:10.3389/fpls.2021.742875 google scholar
  • Mammadova G, Gurbuzaslan I, Yuksel D, et al. Engineering, production, and immunogenicity studies of a truncated form of rabies virus glycoprotein produced in Nicotiana benthamiana plant. Med Science. 2022;11(2):478. doi:10.5455/medscience.2021.09.278 google scholar
  • Pua TL, Chan XY, Loh HS, et al. Purification and immunogenicity of hemagglutinin from highly pathogenic avian influenza virus H5N1 expressed in Nicotiana benthamiana. Hum Vaccin Immunother. 2017;13(2):306-313. google scholar
  • Tottey S, Shoji Y, Jones RM, et al. Plant-produced subunit vaccine candidates against yellow fever induce virus neutralizing antibodies and confer protection against viral challenge in animal models. Am J Trop Med Hyg. 2018;98(2):420-431. google scholar
  • Tottey S, Shoji Y, Mark Jones R, et al. Engineering of a plant-produced virus-like particle to improve the display of the Plasmodium falciparum Pfs25 antigen and transmission-blocking activity of the vaccine candidate. Vaccine. 2023;41(4):938-944. google scholar
  • Qiu X, Wong G, Audet J, et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature. 2014;514(7520):47-53. google scholar
  • Jutras PV, Marusic C, Lonoce C, et al. An accessory protease inhibitor to increase the yield and quality of a tumour-targeting mAb in Nicotiana benthamiana leaves. PLoS One. 2016;11(11):e0167086. doi:10.1371/journal.pone.0167086 google scholar
  • Li J, Stoddard TJ, Demorest ZL, et al. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Plant Biotechnol J. 2016;14(2):533-542. google scholar
  • Marusic C, Pioli C, Stelter S, et al. N-glycan engineering of a plant-produced anti-CD20-hlL-2 immunocytokine significantly enhances its effector functions. Biotechnol Bioeng. 2018;115(3):565-576. google scholar
  • Kommineni V, Markert M, Ren Z, et al. In vivo glycan engineering via the mannosidase inhibitor (kifunensine) improves efficacy of rituximab manufactured in Nicotiana benthamiana plants. Int J Mol Sci. 2019;20(1):194. doi:10.3390/ijms20010194 google scholar
  • Kopertekh L, Meyer T, Freyer C, Hust M. Transient plant production of Salmonella typhimurium diagnostic antibodies. Biotechnol Rep (Amst). 2019;21:e00314. doi:10.1016/j.btre.2019.e00314 google scholar
  • Jutras PV, D’Aoust M, Couture MM, et al. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants. Biotechnol J. 2015;10(9):1478-1486. google scholar
  • Tuse D, Ku N, Bendandi M, et al. Clinical safety and immunogenicity of tumor-targeted, plant-made ld-KLH conjugate vaccines for follicular lymphoma. Biomed Res Int. 2015;2015:648143. doi:10.1155/2015/648143 google scholar
  • Regnard GL, Rybicki EP, Hitzeroth ll. Recombinant expression of beak and feather disease virus capsid protein and assembly of virus-like particles in Nicotiana benthamiana. Virol J. 2017;14(1):174. doi:10.1186/s12985-017-0847-9 google scholar
  • Mbewana S, Meyers AE, Weber B, et al. Expression of Rift Valley fever virus N-protein in Nicotiana benthamiana for use as a diagnostic antigen. BMC Biotechnol. 2018;18(1):77. doi:10.1186/s12896-018-0489-z google scholar
  • Roychowdhury S, Oh YJ, Kajiura H, Hamorsky KT, Fujiyama K, Matoba N. Hydroponic treatment of Nicotiana benthamiana with kifunensine modifies the N-glycans of recombinant glycoprotein antigens to predominantly Man9 high-mannose type upon transient overexpression. Front Plant Sci. 2018;9:62. doi:10.3389/fpls.2018.00062 google scholar
  • Vanmarsenille C, Elseviers J, Yvanoff C, et al. ln planta expression of nanobody-based designer chicken antibodies targeting Campylobacter. PLoS One. 2018;13(9):e0204222. doi:10.1371/journal.pone.0204222 google scholar
  • Zhumabek AT, Abeuova LS, Mukhametzhanov NS, Scholthof HB, Ramankulov YM, Manabayeva SA. Transient expression of a bovine leukemia virus envelope glycoprotein in plants by a recombinant TBSV vector. J Virol Methods. 2018;255:1-7. doi:10.1016/j.jviromet.2018.01.016 google scholar
  • Laughlin RC, Madera R, Peres Y, et al. Plant-made E2 glycoprotein single-dose vaccine protects pigs against classical swine fever. Plant Biotechnol J. 2019;17(2):410-420. google scholar
  • Mamedov T, Yuksel D, llgın M, et al. Production and characterization of nucleocapsid and RBD cocktail antigens of SARS-CoV-2 in Nicotiana benthamiana plant as a vaccine candidate against COVlD-19. Vaccines (Basel). 2021;9(11):1337. doi:10.3390/vaccines9111337 google scholar
  • Hwang MS, Lindenmuth BE, McDonald KA, Falk BW. Bipartite and tripartite Cucumber mosaic virus-based vectors for producing the Acidothermus cellulolyticus endo-1,4-p-glucanase and other proteins in non-transgenic plants. BMC Biotechnol. 2012;12(1):66. doi:10.1186/1472-6750-12-66 google scholar
  • Pogue GP, Vojdani F, Palmer KE, et al. Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J. 2010;8(5):638-654. google scholar
  • Siriwattananon K, Manopwisedjaroen S, Kanjanasirirat P, et al. Development of plant-produced recombinant ACE2-Fc fusion protein as a potential therapeutic agent against SARS-CoV-2. Front Plant Sci. 2021;11:604663. doi:10.3389/fpls.2020.604663 google scholar
  • Siriwattananon K, Manopwisedjaroen S, Shanmugaraj B, et al. Plant-produced receptor-binding domain of SARS-CoV-2 elicits potent neutralizing responses in mice and non-human primates. Front Plant Sci. 2021;12:682953. doi:10.3389/ fpls.2021.682953 google scholar
  • Demone J, Maltseva M, Nourimand M, et al. Scalable agroinfiltration-based production of SARS-CoV-2 antigens for use in diagnostic assays and subunit vaccines. PLoS One. 2022;17(12):e0277668. doi:10.1371/journal.pone.0277668 google scholar
  • Tyurin AA, Suhorukova AV, Kabardaeva KV, Goldenkova-Pavlova lV. Transient gene expression is an effective experimental tool for the research into the fine mechanisms of plant gene function: Advantages, limitations, and solutions. Plants. 2020;9(9):1187. doi:10.3390/plants9091187 google scholar
  • Nosaki S, Hoshikawa K, Ezura H, Miura K. Transient protein expression systems in plants and their applications. Plant Biotechnol. 2021;38(3):297-304. google scholar
  • Mauro VP. Codon optimization in the production of recombinant biotherapeutics: potential risks and considerations. BioDrugs. 2018;32(1):69-81. google scholar
  • Fu H, Liang Y, Zhong X, et al. Codon optimization with deep learning to enhance protein expression. Sci Rep. 2020;10(1):17617. doi:10.1038/s41598-020-74091-z google scholar
  • Mamedov TG, Padhye NV, Viljoen H, Subramanian A. Rational de novo gene synthesis by rapid polymerase chain assembly (PCA) and expression of endothelial protein-C and thrombin receptor genes. J Biotechnol. 2007;131(4):379-387. google scholar
  • Shamloul M, Trusa J, Mett V, Yusibov V. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp. 2014;(86):51204. doi:10.3791/51204 google scholar
  • Büyükköroğlu G, Dora DD, Özdemir F, Hızel C. Techniques for protein analysis. ln: Omics Technologies and Bio-Engineering: Towards Improving Quality of Life. Elsevier; 2018:317-351. doi:10.1016/B978-0-12-804659-3.00015-4 google scholar
  • Fujiuchi N, Matsuda R, Matoba N, Fujiwara K. Effect of nitrate concentration in nutrient solution on hemagglutinin content of Nicotiana benthamiana leaves in a viral vector-mediated transient gene expression system. Plant Biotechnol. 2014;31(3):207-211. google scholar
  • Morgan JB, Connolly EL. Plant-soil interactions: Nutrient uptake. Nature Education Knowledge. 2013;4(8):2. https://www.nature.com/scitable/ knowledge/library/plant-soil-interactions-nutrient-uptake-105289112/ google scholar
  • Kumar S, Kumar S, Mohapatra T. lnteraction between macro- and micro-nutrients in plants. Front Plant Sci. 2021;12:665583. doi:10.3389/fpls.2021.665583 google scholar
  • Karthika KS, Rashmi l, Parvathi MS. Biological functions, uptake and transport of essential nutrients in relation to plant growth. ln: Plant Nutrients and Abiotic Stress Tolerance. Springer Singapore; 2018:1-49. doi:10.1007/978-981-10-9044-8_1 google scholar
  • Fujiuchi N, Matoba N, Matsuda R. Environment control to improve recombinant protein yields in plants based on Agrobacterium-mediated transient gene expression. Front Bioeng Biotechnol. 2016;4:23 doi:10.3389/fbioe.2016.00023 google scholar
  • Shin JH, Choi J, Jeon J, et al. The establishment of new protein expression system using N starvation inducible promoters in Chlorella. Sci Rep. 2020;10(1):12713. doi:10.1038/s41598-020-69620-9 google scholar
  • Hirel B, Le Gouis J, Ney B, Gallais A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot. 2007;58(9):2369-2387. google scholar
  • Hood EE, Woodard SL, Horn ME. Monoclonal antibody manufacturing in transgenic plants-myths and realities. Curr Opin Biotechnol. 2002;13(6):630-635. google scholar
  • Jutras PV, Dufresne PJ, Belanger RR. Nanobody-based purification of recombinant proteins from transgenic plants. Methods Mol Biol. 2005;308:259-273. google scholar
  • Alexander A, Singh VK, Mishra A. Introgression of a novel gene AhBINR differentially expressed during PGPR Brachybacterium saurashtrense-Arachis hypogaea interaction enhances plant performance under nitrogen starvation and salt stress in tobacco. Plant Sci. 2022;324:111429. doi:10.1016/ j.plantsci.2022.111429 google scholar
  • Shang L, Gaudreau L, Martel M, Michaud D, Pepin S, Gosselin A. Effects of GQ2 enrichment, LED inter-lighting, and high plant density on growth of Nicotiana benthamiana used as a host to express influenza virus hemagglutinin H1. Hortic Environ Biotechnol. 2018;59(5):637-648. google scholar
  • Shang L. Basic cultural determinants of recombinant protein yield in Nicotiana benthamiana used as a transient expression host for the flu vaccine antigen hemagglutinin H1. Laval University, Quebec, PhD thesis, 2019. google scholar
  • Srivastava S, Upadhyay MK, Srivastava AK, Abdelrahman M, Suprasanna P, Tran LSP. Gellular and subcellular phosphate transport machinery in plants. Int J Mol Sci. 2018;19(7):1914. doi:10.3390/ijms19071914 google scholar
  • Li Y, Gu M, Zhang X, et al. Engineering a sensitive visual-tracking reporter system for real-time monitoring phosphorus deficiency in Tobacco. Plant Biotechnol J. 2014;12(6):674-684. google scholar
  • Zuo Y, Zhang F. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil. 2011;339(1-2):83-95. google scholar
  • Rout GR, Sahoo S. Role of iron in plant growth and metabolism. Rev Agric Sci. 2015;3(0):1-24. doi:10.7831/ras.3.1 google scholar
  • Klatte M, Schuler M, Wirtz M, Fink-Straube G, Hell R, Bauer P. The Analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol. 2009;150(1):257-271. google scholar
  • Nozoye T, Nakanishi H, Nishizawa NK. Mechanisms of iron uptake by plants. Plant Signal Behav. 2011;6:514-519. google scholar
  • Schmidt W. Iron solutions: Acquisition strategies and signaling pathways in plants. Trends Plant Sci. 2003;8(4):188-193. google scholar
  • Gutierrez-Alanıs D, Yong-Villalobos L, Jimenez-Sandoval P et al. Phosphate starvation-dependent iron mobilization induces GLE14 expression to trigger root meristem differentiation through GLV2/PEPR2 signaling. Dev Cell. 2017;41(5):555-570.e3. doi:10.1016/j.devcel.2017.05.009 google scholar
  • Gazzonelli GI, Velten J. An in vivo, luciferase-based, Agrobacterium-infiltration assay system: implications for post-transcriptional gene silencing. Planta. 2006;224(3):582-597. google scholar
  • Matsuda R, Tahara A, Matoba N, Fujiwara K. Virus vector-mediated rapid protein production in Nicotiana benthamiana: Effects of temperature and photosynthetic photon flux density on hemagglutinin accumulation. Environ Cont Biol. 2012;50(4):375-381. google scholar
  • Moon KB, Lee J, Kang S, et al. Qverexpression and self-assembly of virus-like particles in Nicotiana benthamiana by a single-vector DNA replicon system. Appl Microbiol Biotechnol. 2014;98(19):8281-8290. google scholar
  • McDonald KA, Lindenmuth BE, Dandekar AM, Falk BW. Production of cellulase enzymes in plant hosts using transient agroinfiltration. Published online 2014. Publication of EP2324122A4, Patent. google scholar
  • Patil BL, Fauquet GM. Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies. Mol Plant Pathol. 2015;16(5):484-494. google scholar
  • Larsen JS. Engineering high-level transient expression of heterologous proteins in plant cell suspensions and hairy roots. The Pennsylvania State University, PhD thesis, 2011. google scholar
  • Plesha MA. Development of a viral amplicon-based process for production of biopharmaceuticals in plant tissues. University of Galifornia Davis, PhD thesis, 2008. google scholar
  • Fujiuchi N, Matsuda R, Matoba N, Fujiwara K. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system. Biotechnol Bioeng. 2016;113(4):901-906. google scholar
  • Kang JH, KrishnaKumar S, Atulba SLS, Jeong BR, Hwang SJ. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic Environ Biotechnol. 2013;54(6):501-509. google scholar
  • Matsuda R, Abe T, Fujiuchi N, Matoba N, Fujiwara K. Effect of temperature post viral vector inoculation on the amount of hemagglutinin transiently expressed in Nicotiana benthamiana leaves. J Biosci Bioeng. 2017;124(3):346-350. google scholar
  • Suetsugu N, Wada M. Two coiled-coil proteins, WEB1 and PMI2, suppress the signaling pathway of chloroplast accumulation response that is mediated by two phototropin-interacting proteins, RPT2 and NGH1, in seed plants. Int J Mol Sci. 2017;18(7):1469. doi:10.3390/ijms18071469 google scholar
  • Gashmore AR, Jarillo JA, Wu YJ, Liu D. Gryptochromes: Blue light receptors for plants and animals. Science (1979). 1999;284(5415):760-765. doi:10.1126/ science.284.5415.760 google scholar
  • Hernando GE, Garcia G, Mateos JL. Gasting away the shadows: Elucidating the role of light-mediated posttranscriptional control in plants. Photochem Photobiol. 2017;93(3):656-665. google scholar
  • Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP. Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J. 2003;36(2):203-214. google scholar
  • Ghristie JM. Phototropin blue-light receptors. Annu Rev Plant Biol. 2007;58(1):21-45. google scholar
  • Gangappa SN, Berriri S, Kumar SV. PIF4 coordinates thermosensory growth and immunity in Arabidopsis. Curr Biol. 2017;27(2):243-249. google scholar
  • Zhang Y, Ru Y, Shi Z, et al. Effects of different light conditions on transient expression and biomass in Nicotiana benthamiana leaves. Open Life Sci. 2023;18(1):20220732. doi:10.1515/biol-2022-0732 google scholar
  • Demmig-Adams B, Adams WW. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol. 1992;43(1):599-626. google scholar
  • Ghinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol. 2009;12(2):133-139. google scholar
  • Fujiuchi N, Matoba N, Fujiwara K, Matsuda R. Effects of lighting conditions on Agrobacterium-mediated transient expression of recombinant hemagglutinin in detached Nicotiana benthamiana leaves inoculated with a deconstructed viral vector. Plant Cell Tissue Organ Cult (PCTOC). 2021;145(3):679-688. google scholar
  • Zheng J, Hu MJ, Guo YP. Regulation of photosynthesis by light quality and its mechanism in plants. Ying Yong Sheng Tai Xue Bao. 2008;19(7):1619-1624. google scholar
  • Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development. Weather Clim Extrem. 2015;10:4-10. google scholar
  • Yang LY, Yang SL, Li JY, et al. Effects of different growth temperatures on growth, development, and plastid pigments metabolism of tobacco (Nicotiana tabacum L.) plants. Bot Stud. 2018;59(1):5. doi:10.1186/s40529-018-0221-2 google scholar
  • Sunoj VSJ, Shroyer KJ, Jagadish SVK, Prasad PVV. Diurnal temperature amplitude alters physiological and growth response of maize (Zea mays L.) during the vegetative stage. Environ Exp Bot. 2016;130:113-121. google scholar
  • Yang DL, Sun P, Li MF. Ghilling temperature stimulates growth, gene over-expression and podophyllotoxin biosynthesis in Podophyllum hexandrum Royle. Plant Physiol Biochem. 2016;107:197-203. google scholar
  • Xu G, Singh SK, Reddy VR, Barnaby JY, Sicher RG, Li T. Soybean grown under elevated GQ2 benefits more under low temperature than high temperature stress: Varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield. J Plant Physiol. 2016;205:20-32. google scholar
  • Bernacchi GJ, Portis AR, Nakano H, von Gaemmerer S, Long SP. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 2002;130(4):1992-1998. google scholar
  • Sage RF, Kubien DS. The temperature response of G3 and G4 photosynthesis. Plant Cell Environ. 2007;30(9):1086-1106. google scholar
  • Katja H, Irina B, Hiie I, et al. Temperature responses of dark respiration in relation to leaf sugar concentration. Physiol Plant. 2012;144(4):320-334. google scholar
  • Buyel JF, Fischer R. Predictive models for transient protein expression in tobacco (Nicotiana tabacum L.) can optimize process time, yield, and downstream costs. Biotechnol Bioeng. 2012;109(10):2575-2588. google scholar
  • De Clercq J, Zambre M, Van Montagu M, Dillen W, Angenon G. An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Rep. 2002;21(4):333-340. google scholar
  • Joh LD, Wroblewski T, Ewing NN, VanderGheynst JS. High-level transient expression of recombinant protein in lettuce. Biotechnol Bioeng. 2005;91(7):861-871. google scholar
  • Fullner KJ, Nester EW. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol. 1996;178:1498-1504. google scholar
  • Matoba N, Husk AS, Barnett BW, et al. HIV-1 neutralization profile and plant-based recombinant expression of actinohivin, an env glycan-specific lectin devoid of T-Cell mitogenic activity. PLoS One. 2010;5(6):e11143. doi:10.1371/ journal.pone.0011143 google scholar
  • Dillen W, De Clercq J, Kapila J, Zambre M, Van Montagu M, Angenon G. The effect of temperature on Agrobacterium tumefacıens-mediated gene transfer to plants. Plant J. 1997;12(6):1459-1463. google scholar
  • Ballare CL, Scopel AL, Sânchez RA. Far-red radiation reflected from adjacent leaves: An early signal of competition in plant canopies. Science. 1990;247(4940):329-332. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Yüksel, D., Yusifova, G., Hasanova, A.S., & Mamedov, T. (2019). Enhancing Recombinant Protein Production by Optimising Nutrient Replenishment, Light, and Humidity in a Nicotiana benthamiana Bioreactor. European Journal of Biology, 0(0), -. https://doi.org/10.26650/EurJBiol.2025.1594126


AMA

Yüksel D, Yusifova G, Hasanova A S, Mamedov T. Enhancing Recombinant Protein Production by Optimising Nutrient Replenishment, Light, and Humidity in a Nicotiana benthamiana Bioreactor. European Journal of Biology. 2019;0(0):-. https://doi.org/10.26650/EurJBiol.2025.1594126


ABNT

Yüksel, D.; Yusifova, G.; Hasanova, A.S.; Mamedov, T. Enhancing Recombinant Protein Production by Optimising Nutrient Replenishment, Light, and Humidity in a Nicotiana benthamiana Bioreactor. European Journal of Biology, [Publisher Location], v. 0, n. 0, p. -, 2019.


Chicago: Author-Date Style

Yüksel, Damla, and Gunel Yusifova and Aysu Shovket Hasanova and Tarlan Mamedov. 2019. “Enhancing Recombinant Protein Production by Optimising Nutrient Replenishment, Light, and Humidity in a Nicotiana benthamiana Bioreactor.” European Journal of Biology 0, no. 0: -. https://doi.org/10.26650/EurJBiol.2025.1594126


Chicago: Humanities Style

Yüksel, Damla, and Gunel Yusifova and Aysu Shovket Hasanova and Tarlan Mamedov. Enhancing Recombinant Protein Production by Optimising Nutrient Replenishment, Light, and Humidity in a Nicotiana benthamiana Bioreactor.” European Journal of Biology 0, no. 0 (May. 2025): -. https://doi.org/10.26650/EurJBiol.2025.1594126


Harvard: Australian Style

Yüksel, D & Yusifova, G & Hasanova, AS & Mamedov, T 2019, 'Enhancing Recombinant Protein Production by Optimising Nutrient Replenishment, Light, and Humidity in a Nicotiana benthamiana Bioreactor', European Journal of Biology, vol. 0, no. 0, pp. -, viewed 23 May. 2025, https://doi.org/10.26650/EurJBiol.2025.1594126


Harvard: Author-Date Style

Yüksel, D. and Yusifova, G. and Hasanova, A.S. and Mamedov, T. (2019) ‘Enhancing Recombinant Protein Production by Optimising Nutrient Replenishment, Light, and Humidity in a Nicotiana benthamiana Bioreactor’, European Journal of Biology, 0(0), pp. -. https://doi.org/10.26650/EurJBiol.2025.1594126 (23 May. 2025).


MLA

Yüksel, Damla, and Gunel Yusifova and Aysu Shovket Hasanova and Tarlan Mamedov. Enhancing Recombinant Protein Production by Optimising Nutrient Replenishment, Light, and Humidity in a Nicotiana benthamiana Bioreactor.” European Journal of Biology, vol. 0, no. 0, 2019, pp. -. [Database Container], https://doi.org/10.26650/EurJBiol.2025.1594126


Vancouver

Yüksel D, Yusifova G, Hasanova AS, Mamedov T. Enhancing Recombinant Protein Production by Optimising Nutrient Replenishment, Light, and Humidity in a Nicotiana benthamiana Bioreactor. European Journal of Biology [Internet]. 23 May. 2025 [cited 23 May. 2025];0(0):-. Available from: https://doi.org/10.26650/EurJBiol.2025.1594126 doi: 10.26650/EurJBiol.2025.1594126


ISNAD

Yüksel, Damla - Yusifova, Gunel - Hasanova, AysuShovket - Mamedov, Tarlan. Enhancing Recombinant Protein Production by Optimising Nutrient Replenishment, Light, and Humidity in a Nicotiana benthamiana Bioreactor”. European Journal of Biology 0/0 (May. 2025): -. https://doi.org/10.26650/EurJBiol.2025.1594126



TIMELINE


Submitted01.12.2024
Accepted04.04.2025
Published Online09.05.2025

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE



Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.