Research Article


DOI :10.26650/EurJBiol.2022.1191701   IUP :10.26650/EurJBiol.2022.1191701    Full Text (PDF)

Epibrassinolide Triggers Apoptotic Cell Death in SK-N-AS Neuroblastoma Cells by Targeting GSK3β in a ROS Generation-Dependent Way

Pınar Obakan YerlikayaShafaq Naxmedova

Objective: Epibrassinolide (EBR), a biologically active member of the brassinosteroids plant hormone family, has been recently indicated as an apoptotic inducer in various cancer cells without affecting non-tumor cell proliferation. Glycogen synthase kinase 3β (GSK3β) was the first identified molecule that acts as a critical mediator of glycogen metabolism and insulin signaling mechanism. GSK3β has been described as an essential factor for tumor progression by phosphorylating and inactivating the pro-apoptotic family member of the Bcl-2 family, Bax. It was recently shown to regulate cell division, differentiation, and adhesion. Materials and Methods: To investigate the relative cell viability affected by EBR treatment and the preventive effect of N-acetyl cysteine (NAC) we performed MTT assay and FACS analysis, respectively. Colony formation and soft agar techniques were used to understand the inhibitory effect of EBR on colony formation and diameters. Annexin V-PI analysis by flow cytometry was performed for the measurement of the apoptotic cell percentages. Fluorescence microscopy was performed for the determination of mitochondria membrane potential following DiOC6 staining. The expression profiles of apoptotic proteins, as well as GSK3β and β-catenin were investigated by immunoblotting. Results: Our results indicated that EBR induced mitochodria-mediated apoptosis by inducing ROS generation which can be prevented by NAC, a reactive oxgen species scavenger. EBR-induced apoptosis can influence the inhibitory phosphorylation of GSK3β by Ser9 and prevents the translocation of the down-stream target, β-catenin. Conclusion: This study evaluated EBR as a potential apoptotic inducer in neuroblastoma cell line SK-N-AS and investigated the GSK3β involvement.


PDF View

References

  • 1. Qiu B and Matthay KK. Advancing therapy for neuroblastoma. Nat Rev Clin Oncol 2022; 1-19. google scholar
  • 2. Otte J, Dyberg C, Pepich A, and Johnsen JI, MYCN Function in Neuroblastoma Development. Front Oncol 2021; 10: 3210. google scholar
  • 3. Foster JH, Voss SD, Hall DC, Minard CG, Balis FM, Wilner K, et al. Activity of Crizotinib in Patients with ALK-Aberrant Relapsed/ Refractory Neuroblastoma: A Children’s Oncology Group Study (ADVL0912). Clin Cancer Res 2021; 27(13): 3543-8. google scholar
  • 4. Carter YM, Kunnimalaiyaan S, Chen H, Gamblin TC, Kunnimalai-yaan M. Specific glycogen synthase kinase-3 inhibition reduces neuroendocrine markers and suppresses neuroblastoma cell growth. Cancer Biol Ther 2014; 15(5): 510-5. google scholar
  • 5. Dickey A, Schleicher S, Leahy K, Hu R, Hallahan D, Thotala DK. GSK-3p inhibition promotes cell death, apoptosis, and in vivo tumor growth delay in neuroblastoma Neuro-2A cell line. J Neurooncol 2011; 104(1): 145-53. google scholar
  • 6. Augello G, Emma MR, Cusimano A, Azzolina A, Montalto G, McCu-brey JA, Cervello M. The Role of GSK-3 in Cancer Immunotherapy: GSK-3 Inhibitors as a New Frontier in Cancer Treatment. Cells 2020; 9(6): 1427. google scholar
  • 7. Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Ki-nase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14: 792364. google scholar
  • 8. Peres ALGL, Soares JS, Tavares RG, Righetto G, Zullo MAT, Mandava NB, Menossi M. Brassinosteroids, the Sixth Class of Phytohormones: A Molecular View from the Discovery to Hormonal Interactions in Plant Development and Stress Adaptation. Int J Mol Sci 2019; 20(2): 331. google scholar
  • 9. Thummel CS, Chory J. Steroid signaling in plants and insects-com-mon themes, different pathways. Genes Dev 2002; 16(24): 3113-29. google scholar
  • 10. Manghwar H, Hussain A, Ali Q, Liu F. Brassinosteroids (BRs) Role in Plant Development and Coping with Different Stresses. Int J Mol Sci 2022; 23(3): 1012. google scholar
  • 11. Kaur Kohli S, Bhardwaj A, Bhardwaj V, Sharma A, Kalia N, Landi M, Bhardwaj R. Therapeutic Potential of Brassinosteroids in Biomedical and Clinical Research. Biomolecules 2020; 10(4): 572. google scholar
  • 12. Steigerova J, Rarova L, Oklestkova J, Krizova K, Levkova M, Svachova M, et al. Mechanisms of natural brassinosteroid-induced apoptosis of prostate cancer cells. Food Chem Toxicol 2012; 50(11): 4068-76. google scholar
  • 13. Coskun D, Obakan P, Arisan ED, ^oker-Gurkan A, Palavan-Unsal N. Epibrassinolide alters PI3K/MAPK signaling axis via activating Foxo3a-induced mitochondria-mediated apoptosis in colon cancer cells. Exp Cell Res 2015; 338(1): 10-21. google scholar
  • 14. Obakan P, Arisan ED, Calcabrini A, Agostinelli E, Bolkent S, Pala-van-Unsal N. Activation of polyamine catabolic enzymes involved in diverse responses against epibrassinolide-induced apoptosis in LNCaP and DU145 prostate cancer cell lines. Amino Acids 2014; 46(3): 553-64. google scholar
  • 15. Johnsen JI, Dyberg C, Wickstrom M. Neuroblastoma-A Neural Crest Derived Embryonal Malignancy. Front Mol Neurosci 2019; 12: 9. google scholar
  • 16. Gao Y, Tan L, Yu JT, Tan L. Tau in Alzheimer’s Disease: Mechanisms and Therapeutic Strategies. Curr Alzheimer Res 2018; 15(3): 283-300. google scholar
  • 17. Steigerova J, Oklestkova J, Levkova M, Rarova L, Kolar Z, Strnad M. Brassinosteroids cause cell cycle arrest and apoptosis of human breast cancer cells. Chem Biol Interact 2010; 188 (3): 487-96. google scholar
  • 18. Obakan P, Barrero C, Coker-Gurkan A, Arisan ED, Merali S, Pala-van-Unsal N. SILAC-Based Mass Spectrometry Analysis Reveals That Epibrassinolide Induces Apoptosis via Activating Endoplasmic Reticulum Stress in Prostate Cancer Cells. PLoS One 2015; 10(9): e0135788. google scholar
  • 19. Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, et al. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol 2013; 301: 215-90. google scholar
  • 20. Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Front Mol Biosci 2019; 6: 11. google scholar
  • 21. Nie T, Yang S, Ma H, Zhang L, Lu F, Tao K, et al. Regulation of ER stress-induced autophagy by GSK3ß-TIP60-ULK1 pathway. Cell Death Dis 2016; 7(12): e2563. google scholar
  • 22. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 2015; 148: 114-31. google scholar
  • 23. Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 2010; 35(3): 161-8. google scholar
  • 24. Zhang C, Su L, Huang L, Song ZY. GSK3ß inhibits epithelial-mesenchymal transition via the Wnt/ß-catenin and PI3K/Akt pathways. Int J Ophthalmol 2018; 11(7): 1120-8. google scholar
  • 25. Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ. A central role for cadherin signaling in cancer. Exp Cell Res 2017; 358(1): 78-85. google scholar
  • 26. Donmez HG, Demirezen S, Beksac MS. The relationship between beta-catenin and apoptosis: A cytological and immunocytochemical examination. Tissue Cell 2016; 48(3): 160-7. google scholar
  • 27. Martinez-Font E, Pérez-Capó M, Ramos R, Felipe I, Garcías C, Luna P, et al. Impact of Wnt/ß-Catenin Inhibition on Cell Proliferation through CDC25A Downregulation in Soft Tissue Sarcomas. Cancers (Basel) 2020; 12(9): 2556. google scholar
  • 28. Lee Y, Lee JK, Ahn SH, Lee J, Nam DH. WNT signaling in glioblastoma and therapeutic opportunities. Lab Invest 2016; 96(2): 137-50. google scholar
  • 29. Meares GP, Mines MA, Beurel E, Eom TY, Song L, Zmijewska AA, Jope RS. Glycogen synthase kinase-3 regulates endoplasmic reticulum (ER) stress-induced CHOP expression in neuronal cells. Exp Cell Res 2011; 317(11): 1621-8. google scholar
  • 30. Obakan Yerlikaya P, Arisan ED, Coker Gurkan A, Okumus OO, Yeni-gun T, Ozbey U, Kara M, Palavan Unsal N. Epibrassinolide prevents tau hyperphosphorylation via GSK3ß inhibition in vitro and improves Caenorhabditis elegans lifespan and motor deficits in combination with roscovitine. Amino Acids 2021; 53(9): 1373-89. google scholar
  • 31. Liao Y, Sassi S, Halvorsen S, Feng Y, Shen J, Gao Y, Cote G, et al. Androgen receptor is a potential novel prognostic marker and oncogenic target in osteosarcoma with dependence on CDK11. Sci Rep 2017; 7: 43941. google scholar
  • 32. Wang Y, Mikhailova M, Bose S, Pan CX, deVere White RW, Ghosh PM. Regulation of androgen receptor transcriptional activity by rapamycin in prostate cancer cell proliferation and survival. Oncogene 2008; 27(56): 7106-17. google scholar
  • 33. Bhutani KK, Paul AT, Fayad W, Linder S. Apoptosis inducing activity of steroidal constituents from Solanum xanthocarpum and Asparagus racemosus. Phytomedicine 2010; 17(10): 789-93. google scholar
  • 34. Olivieri G, Baysang G, Meier F, Müller-Spahn F, Stähelin HB, Brockhaus M, Brack C. N-acetyl-L-cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity: effects on beta-amyloid secretion and tau phosphorylation. J Neurochem 2001; 76(1): 224-33. google scholar
  • 35. Obakan P, Arisan ED, Coker-Gurkan A, Palavan-Unsal N. Epibrassin-olide-induced apoptosis regardless of p53 expression via activating polyamine catabolic machinery, a common target for androgen sensitive and insensitive prostate cancer cells. Prostate 2014; 74(16): 1622-33. google scholar
  • 36. Petit-Paitel A, Brau F, Cazareth J, Chabry J. Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons. PLoS One 2009; 4(5): e5491. google scholar
  • 37. Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, et al. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 2008; 68(16): 6643-51. google scholar
  • 38. Kuwahara A, Sakai H, Xu Y, Itoh Y, Hirabayashi Y, Gotoh Y. Tcf3 represses Wnt-ß-catenin signaling and maintains neural stem cell population during neocortical development. PLoS One 2014; 9(5): e94408. google scholar
  • 39. Sadot E, Geiger B, Oren M, Ben-Ze’ev A. Down-regulation of be-ta-catenin by activated p53. Mol Cell Biol 2001; 21(20): 6768-81. google scholar
  • 40. Jang GB, Kim JY, Cho SD, Park KS, Jung JY, Lee HY, et al. Blockade of Wnt/ß-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype. Sci Rep 2015; 5: 12465. google scholar
  • 41. Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R. H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/ß-catenin in ox-LDL -stimulated vascular smooth muscle cells. J Biomed Sci 2018; 25(1): 11. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Obakan Yerlikaya, P., & Naxmedova, S. (2022). Epibrassinolide Triggers Apoptotic Cell Death in SK-N-AS Neuroblastoma Cells by Targeting GSK3β in a ROS Generation-Dependent Way. European Journal of Biology, 81(2), 240-250. https://doi.org/10.26650/EurJBiol.2022.1191701


AMA

Obakan Yerlikaya P, Naxmedova S. Epibrassinolide Triggers Apoptotic Cell Death in SK-N-AS Neuroblastoma Cells by Targeting GSK3β in a ROS Generation-Dependent Way. European Journal of Biology. 2022;81(2):240-250. https://doi.org/10.26650/EurJBiol.2022.1191701


ABNT

Obakan Yerlikaya, P.; Naxmedova, S. Epibrassinolide Triggers Apoptotic Cell Death in SK-N-AS Neuroblastoma Cells by Targeting GSK3β in a ROS Generation-Dependent Way. European Journal of Biology, [Publisher Location], v. 81, n. 2, p. 240-250, 2022.


Chicago: Author-Date Style

Obakan Yerlikaya, Pınar, and Shafaq Naxmedova. 2022. “Epibrassinolide Triggers Apoptotic Cell Death in SK-N-AS Neuroblastoma Cells by Targeting GSK3β in a ROS Generation-Dependent Way.” European Journal of Biology 81, no. 2: 240-250. https://doi.org/10.26650/EurJBiol.2022.1191701


Chicago: Humanities Style

Obakan Yerlikaya, Pınar, and Shafaq Naxmedova. Epibrassinolide Triggers Apoptotic Cell Death in SK-N-AS Neuroblastoma Cells by Targeting GSK3β in a ROS Generation-Dependent Way.” European Journal of Biology 81, no. 2 (Mar. 2024): 240-250. https://doi.org/10.26650/EurJBiol.2022.1191701


Harvard: Australian Style

Obakan Yerlikaya, P & Naxmedova, S 2022, 'Epibrassinolide Triggers Apoptotic Cell Death in SK-N-AS Neuroblastoma Cells by Targeting GSK3β in a ROS Generation-Dependent Way', European Journal of Biology, vol. 81, no. 2, pp. 240-250, viewed 29 Mar. 2024, https://doi.org/10.26650/EurJBiol.2022.1191701


Harvard: Author-Date Style

Obakan Yerlikaya, P. and Naxmedova, S. (2022) ‘Epibrassinolide Triggers Apoptotic Cell Death in SK-N-AS Neuroblastoma Cells by Targeting GSK3β in a ROS Generation-Dependent Way’, European Journal of Biology, 81(2), pp. 240-250. https://doi.org/10.26650/EurJBiol.2022.1191701 (29 Mar. 2024).


MLA

Obakan Yerlikaya, Pınar, and Shafaq Naxmedova. Epibrassinolide Triggers Apoptotic Cell Death in SK-N-AS Neuroblastoma Cells by Targeting GSK3β in a ROS Generation-Dependent Way.” European Journal of Biology, vol. 81, no. 2, 2022, pp. 240-250. [Database Container], https://doi.org/10.26650/EurJBiol.2022.1191701


Vancouver

Obakan Yerlikaya P, Naxmedova S. Epibrassinolide Triggers Apoptotic Cell Death in SK-N-AS Neuroblastoma Cells by Targeting GSK3β in a ROS Generation-Dependent Way. European Journal of Biology [Internet]. 29 Mar. 2024 [cited 29 Mar. 2024];81(2):240-250. Available from: https://doi.org/10.26650/EurJBiol.2022.1191701 doi: 10.26650/EurJBiol.2022.1191701


ISNAD

Obakan Yerlikaya, Pınar - Naxmedova, Shafaq. Epibrassinolide Triggers Apoptotic Cell Death in SK-N-AS Neuroblastoma Cells by Targeting GSK3β in a ROS Generation-Dependent Way”. European Journal of Biology 81/2 (Mar. 2024): 240-250. https://doi.org/10.26650/EurJBiol.2022.1191701



TIMELINE


Submitted19.10.2022
Accepted22.11.2022
Published Online15.12.2022

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.