Research Article


DOI :10.26650/EurJBiol.2025.1557063   IUP :10.26650/EurJBiol.2025.1557063    Full Text (PDF)

Identification of Karanjin’s Molecular Targets for Colorectal Cancer Treatment Using Network Pharmacology and Molecular Docking

Khairah AnsariPriyesh KumarDevendrasinh Jhala

Objective: Colorectal cancer is a life-threatening condition. Karanjin, a furanoflavonol, has shown therapeutic potential against cancer. However, a comprehensive analysis of its mechanism of action is currently lacking. Hence, the primary objective of this study was to employ an integrated network pharmacology approach along with molecular docking to unravel the probable efficacy of karanjin in treating colorectal cancer.

Materials and Methods: Pharmacological assessments were performed using QikProp. Protein targets sourced from ChEMBL, Swiss target prediction, and PharmMapper were cross-referenced with colorectal cancer targets identified from GeneCards. A protein-protein interaction (PPI) network was generated using Cytoscape. Key targets were identified using cytoHubba. Functional insights were obtained through GO and KEGG analyses using DAVID. A Compound–Disease–Pathways–Targets Network was developed based on integrated data. Molecular docking was performed using YASARA. Finally, to validate the stability of the docked ligand-protein complexes, MD simulations were conducted.

Results: Karanjin met the ADME criteria and exhibited interactions with 270 targets, including 263 individuals linked to diseases. The topological analysis of the PPI network identified 24 targets. GO analysis yielded 20 terms, mainly associated with signal transduction, protein binding, and the cytosol. KEGG analysis identified 20 signalling pathways, with pathways in cancer being the most prominent. Using these data, Compound-Disease-Pathways-Targets network was constructed. Molecular docking and simulations highlighted strong interactions between AKT1 and HSP90AA1.

Conclusion: This study indicated that karanjin may exhibit anticancer properties against colorectal cancer via modulating PI3K-Akt signalling pathway. This study provides a building block for further research. 


PDF View

References

  • Cooper GM, Hausman RE. The development and causes of cancer. İn: The Cell: A Molecular Approach. 2nd ed. Sunderland, MA: Sinauer Associates; 2000:725-766 google scholar
  • Siegel RL, Wagle NS, Cercek A, Smith RA, Jernal A. Colorectal cancer statistics, CA. Cancer J Clin. 2023;73(3):233-254. google scholar
  • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789-799. google scholar
  • Muhammad N, Usmani D, Tarique M, et al. The role of natural products and their multitargeted approach to treat solid cancer. Cells 2022;11(14):2209. doi:10.3390/ cells11142209 google scholar
  • Aschele C, Debernardis D, Bandelloni R, et al. Thymidylate synthase protein expression in colorectalcancer metastases predicts for clinical outcome to leucovorin-modulated bolus or infusional 5-fluorouracil but not methotreaxate modulate bolus 5-fluorouracil. Ann Oncol, 2002;12(13):1882-1892. google scholar
  • Hasima N, Aggarwal BB. Cancer-linked targets modulated by curcumin. Int J Biochem Mol Bio, 2012;3(4):328-351. google scholar
  • Song X, Zhang Y, Dai E, Wang L, Du H. Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking. Int Immunopharmacol, 2020;80:106179. doi.:10.1016/j.intimp.2019.106179 google scholar
  • Dong Y, Zhao Q, Wang Y. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy. Sci Rep, 2021;11(1):19496. doi:10.1038/ s41598-021-98925-6 google scholar
  • Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci, 2019;20(18):4331. doi:10.3390/ijms2018433 google scholar
  • Guo JR, Chen QQ, Wai Kei Lam C, Zhang W. Effects of karanjin on cell cycle arrest and apoptosis in human A549, HepG2 and HL 60 cancer cells. Biol Res, 2015;48:1-7. doi:10.1186/S40659-015-0031-X google scholar
  • Roy R, Mandal S, Chakrabarti J, Saha P, Panda CK. Downregulation of hyaluronic acid-CD44 signaling pathway in cervical cancer cell by natural polyphenols plumbagin, pongapin and karanjin. Mol Celi Biochem. 2021;476(l0):3701-3709. google scholar
  • Zhang J, Xie Y, Fan Q, Wang C. Effects of karanjin on dimethylhydrazine induced colon carcinoma and aberrant crypt foci are facilitated by alteration of the p53/ Bcl2/BAX pathway for apoptosis. Biotech Histochem. 2021;96(3):202-212. google scholar
  • Lipinski CA, Discovery M, Lombardo F, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(l-3):3-25. google scholar
  • Gfeller D, Grosdidier A, Wirth M, et al. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42(W1):W32-W38. google scholar
  • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL:A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40(D1):D1100-D1107. google scholar
  • Saito R, Smoot ME, Ono K, et al. A travel guide to cytoscape plugins. Nat Methods. 2012;9(ll):1069-1076. google scholar
  • Dennis G, Sherman BT, Hosack DA, et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):1-11. doi:10.1186/ GB-2003-4-9-R60. google scholar
  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(Dl):D353-D361. google scholar
  • Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46(W1):W363-W367. google scholar
  • Krieger E, Vriend G. YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics. 2014;30(20):2981-2982. google scholar
  • Liu X, Ouyang S, Yu B, et al. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010;38:W609-W614. google scholar
  • Vrbanac, J., Slauter, R. ADME in Drug Discovery. In:A Comprehensive Guide to Toxicology in Nonclinical Drug Development Elsevier: Amsterdam, The Netherlands, 2017;39-67. doi:10.1016/B978-0-12-803620-4.00003-7 google scholar
  • Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev. 2016;101:89-98. google scholar
  • Das S, Tiwari GJ, Ghosh A. In silico analysis of new flavonoids from Pongamia pinnata with a therapeutic potential for age-related macular degeneration. 3 Biotech. 2020;10(12):1-6. doi:10.1007/s13205-020-02537-2 google scholar
  • Agamah FE, Mazandu GK, Hassan R, et al. Computational/in silico methods in drug target and lead prediction. Brief Bioinform. 2020;21(5):1663-1675. google scholar
  • Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: Tool for the unification of biology. Nat Genet. 2000;25(1):25-29. google scholar
  • Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol. 2018;11(1):1-23. doi:10.1186/S13045-018-0605-5 google scholar
  • Wang L, Zuo X, Xie K, Wei D. The role of CD44 and cancer stem cells. Methods Mol Bio. 2018;1692:31-42. google scholar
  • Yu J, Yang H, Lv C, Dai X. The cytotoxicity of karanjin toward breast cancer cells is involved in the PI3K/Akt signaling pathway. Drug Dev Res. 2022;83(7):1673-1682. google scholar
  • Moodie SA, Willumsen BM, Weber MJ, Wolfman A. Complexes of Ras'GTP with Raf-1 and mitogen-activated protein kinase kinase. Science. 1993;260(5114):1658-1661. google scholar
  • Castellano E, Downward J. RAS interaction with PI3K: More than just another effector pathway. Genes Cancer. 2011;2(3):261-274. google scholar
  • Molina JR, Adjei AA. The Ras/Raf/MAPK pathway. J Thorac Oncol. 2006;1(1):6-7. doi:10.1016/s1556-0864(15)31506-9 google scholar
  • Liu H, Zhang Z, Huang Y, et al. Plasma HSP90AA1 predicts the risk of breast cancer onset and distant metastasis. Front Cell Dev Biol. 2021;9:639596. doi:10.3389/fcell.2021.639596 google scholar
  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem Sci. 2006;31(3):164-172. google scholar
  • Zhang M, Peng Y, Yang Z, et al. DAB2IP down-regulates HSP90AA1 to inhibit the malignant biological behaviors of colorectal cancer. BMC Cancer. 2022;22(1):1-15. doi:10.1186/s12885-022-09596-z google scholar
  • Moon SJ, Jeong BC, Kim HJ, et al. Bruceantin targets HSP90 to overcome resistance to hormone therapy in castration-resistant prostate cancer. Theranostics 2021;11(2):958-973. google scholar
  • Sain A, Khamrai D, Kandasamy T, Naskar D. Apigenin exerts anti-cancer effects in colon cancer by targeting HSP90AA1. Biomol Struct Dyn. 2023;1-13. doi:10.1080/07391102.2023.2299305 google scholar
  • Zhou Y, Wu C, Qian X, et al. Multitarget and multipathway regulation of zhenqi fuzheng granule against non-small cell lung cancer based on network pharmacology and molecular. Evid Based Complement Alternat Med. 2022;2022(5967078):1-16. doi:10.1155/2022/5967078. google scholar
  • Urosevic J, Nebreda AR, Gomis RR. MAPK signaling control of colon cancer metastasis. Cell Cycle. 2014;13(17):2641-2642. google scholar
  • Ohori M, Kinoshita T, Okubo M, et al. Identification of a selective ERK inhibitor and structural determination of the inhibitor-ERK2 complex. Biochem Biophy Res Commun. 2005;336(1):357-363. google scholar
  • Prieto-Martınez FD, Arciniega M, Medina-Franco JL. Molecular docking: Current advances and challenges. TIP Revista especializada en ciencias guimico-biolögicas. 2018;2l(l):1-23. doi:10.22201/Fesz.23958723e.2018.0143 google scholar
  • Kolb P, Irwin JJ. Docking screens: right for the right reasons?. Curr top Med Chem. 2009;9(9):755-770. google scholar
  • Alonso H, Bliznyuk AA, Gready, JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev. 2006;26(5):531-568. google scholar
  • Martınez, L. Automatic Identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One. 2015;10(3):e0119264. doi:10.1371/journal.pone.0119264 google scholar
  • Sneha P, Priya DCG. Molecular dynamics: New frontier in personalized medicine. Adv Protein Chem Struct Biol. 2016;102:181-224. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Ansari, K., Kumar, P., & Jhala, D. (2019). Identification of Karanjin’s Molecular Targets for Colorectal Cancer Treatment Using Network Pharmacology and Molecular Docking. European Journal of Biology, 0(0), -. https://doi.org/10.26650/EurJBiol.2025.1557063


AMA

Ansari K, Kumar P, Jhala D. Identification of Karanjin’s Molecular Targets for Colorectal Cancer Treatment Using Network Pharmacology and Molecular Docking. European Journal of Biology. 2019;0(0):-. https://doi.org/10.26650/EurJBiol.2025.1557063


ABNT

Ansari, K.; Kumar, P.; Jhala, D. Identification of Karanjin’s Molecular Targets for Colorectal Cancer Treatment Using Network Pharmacology and Molecular Docking. European Journal of Biology, [Publisher Location], v. 0, n. 0, p. -, 2019.


Chicago: Author-Date Style

Ansari, Khairah, and Priyesh Kumar and Devendrasinh Jhala. 2019. “Identification of Karanjin’s Molecular Targets for Colorectal Cancer Treatment Using Network Pharmacology and Molecular Docking.” European Journal of Biology 0, no. 0: -. https://doi.org/10.26650/EurJBiol.2025.1557063


Chicago: Humanities Style

Ansari, Khairah, and Priyesh Kumar and Devendrasinh Jhala. Identification of Karanjin’s Molecular Targets for Colorectal Cancer Treatment Using Network Pharmacology and Molecular Docking.” European Journal of Biology 0, no. 0 (Mar. 2025): -. https://doi.org/10.26650/EurJBiol.2025.1557063


Harvard: Australian Style

Ansari, K & Kumar, P & Jhala, D 2019, 'Identification of Karanjin’s Molecular Targets for Colorectal Cancer Treatment Using Network Pharmacology and Molecular Docking', European Journal of Biology, vol. 0, no. 0, pp. -, viewed 10 Mar. 2025, https://doi.org/10.26650/EurJBiol.2025.1557063


Harvard: Author-Date Style

Ansari, K. and Kumar, P. and Jhala, D. (2019) ‘Identification of Karanjin’s Molecular Targets for Colorectal Cancer Treatment Using Network Pharmacology and Molecular Docking’, European Journal of Biology, 0(0), pp. -. https://doi.org/10.26650/EurJBiol.2025.1557063 (10 Mar. 2025).


MLA

Ansari, Khairah, and Priyesh Kumar and Devendrasinh Jhala. Identification of Karanjin’s Molecular Targets for Colorectal Cancer Treatment Using Network Pharmacology and Molecular Docking.” European Journal of Biology, vol. 0, no. 0, 2019, pp. -. [Database Container], https://doi.org/10.26650/EurJBiol.2025.1557063


Vancouver

Ansari K, Kumar P, Jhala D. Identification of Karanjin’s Molecular Targets for Colorectal Cancer Treatment Using Network Pharmacology and Molecular Docking. European Journal of Biology [Internet]. 10 Mar. 2025 [cited 10 Mar. 2025];0(0):-. Available from: https://doi.org/10.26650/EurJBiol.2025.1557063 doi: 10.26650/EurJBiol.2025.1557063


ISNAD

Ansari, Khairah - Kumar, Priyesh - Jhala, Devendrasinh. Identification of Karanjin’s Molecular Targets for Colorectal Cancer Treatment Using Network Pharmacology and Molecular Docking”. European Journal of Biology 0/0 (Mar. 2025): -. https://doi.org/10.26650/EurJBiol.2025.1557063



TIMELINE


Submitted27.09.2024
Accepted04.12.2024
Published Online28.01.2025

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.