Research Article


DOI :10.26650/EurJBiol.2022.1168881   IUP :10.26650/EurJBiol.2022.1168881    Full Text (PDF)

In silico Evaluation of WWC1 in Melanoma Using Bioinformatic Analyses

Dilara Kamer ÇolakUfuk ÜnalSema Bolkent

Objective: It is suggested that WWC1 has an active role in melanoma progression. Therefore, it was aimed to evaluate the WWC1 gene expression profiles in melanoma, an aggressive malignant skin tumor.

Materials and Methods: Quantitative data from melanoma samples (n=592) were clinically evaluated using cBioPortal. Gene expression (GSE65904 and GSE22155) and gene methylation datasets (GSE120878) were retrieved from the Gene Expression Omnibus (GEO) database. Using the GeneMANIA database, the functions of given genes and pathways were evaluated. The STRING database achieved a protein-protein interaction (PPI) network was used to visualize it.

Results: Mutations in the WWC1 were found in 6.7% of all melanoma samples, 8% of skin cutaneous melanoma, and 2.8% of metastatic melanoma. When the GeneMANIA platform was used to analyze gene interactions, it was determined that the WWC1 gene shared common protein domains with three genes, was co-expressed with five genes, and interacted with 17 other genes. According to the function analysis results, the most effective of the ten functions of WWC1 was Hippo signaling, with a coverage value of 0.16 (p=0.009). In addition, it then played a role in Notch signaling and organ growth. When the protein-protein interactions were examined, it was determined that it interacted with ten proteins and was co-expressed with nine.

Conclusion: The findings demonstrated the potential of WWC1 to be effective in the progression of melanoma. Further research is needed to provide a more accurate analysis of WWC1 expression and methylation.


PDF View

References

  • 1. Kolarsick PAJ, Kolarsick MA, Goodwin C. Site-specific sancer series: Skin ancer. 1st ed. Pittsburgh, PA: Oncology Nursing Society; 2009. google scholar
  • 2. Linares MA, Zakaria A, Nizran P. Skin cancer. Prim Care Clin Off Pract 2015; 42(4): 645-59. google scholar
  • 3. Ahmed B, Qadir MI, Ghafoor S. Malignant melanoma: Skin cancer-diagnosis, prevention, and treatment. Crit Rev Eukaryot Gene Expr 2020; 30(4): 291-7. google scholar
  • 4. Henley SJ, Ward EM, Scott S, Ma J, Anderson RN, Firth AU, et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer 2020; 126(10): 2225-49. google scholar
  • 5. Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther 2019; 20(11): 1366-79. google scholar
  • 6. Xu Y, Mu Y, Wang L, Zhang X. Detailed analysis of molecular mechanisms in primary and metastatic melanoma. J Comput Biol 2020; 27(1): 9-19. google scholar
  • 7. Xia Y, Xie J, Zhao J, Lou Y, Cao D. Screening and identification of key biomarkers in melanoma: Evidence from bioinformatic analyses. J Comput Biol 2021; 28(3): 317-29. google scholar
  • 8. Dong C, Dang D, Zhao X, Wang Y, Wang Z, Zhang C. Integrative characterization of the role of IL27 in melanoma using bioinformatics analysis. Front Immunol 2021; (18)12: 713001. google scholar
  • 9. Li Q, Zhang L, Wu S, Huang C, Liu J, Wang P, et al. Bioinformatics analysis identifies microRNAs and target genes associated with prognosis in patients with melanoma. Med Sci Monit 2019; 25: 7784-94. google scholar
  • 10. Maugeri-Sacca M, De Maria R. The Hippo pathway in normal development and cancer. Pharmacol Ther 2018; 186: 60-72. google scholar
  • 11. Shen H, Huang C, Wu J, Li J, Hu T, Wang Z, et al. SCRIB promotes proliferation and metastasis by targeting Hippo/YAP signalling in colorectal cancer. Front Cell Dev Biol 2021; 9: 656359. google scholar
  • 12. Kubelac P, Braicu C, Raduly L, Chiroi P, Nutu A, Cojocneanu R, et al. Comprehensive analysis of the expression of key genes related to Hippo signaling and their prognosis impact in ovarian cancer. Diagnostics 2021; 11(2): 344. google scholar
  • 13. Chen Y-A, Lu C-Y, Cheng T-Y, Pan S-H, Chen H-F, Chang N-S. WW domain-containing proteins YAP and TAZ in the Hippo pathway as key regulators in stemness maintenance, tissue homeostasis, and tumorigenesis. Front Oncol 2019; 9: 60. google scholar
  • 14. Wennmann DO, Schmitz J, Wehr MC, Krahn MP, Koschmal N, Grom-nitza S, et al. Evolutionary and molecular facts link the WWC protein family to Hippo signaling. Mol Biol Evol 2014; 31(7): 1710-23. google scholar
  • 15. Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell 2010; 18(2): 309-16. google scholar
  • 16. Xiao L, Chen Y, Ji M, Dong J. KIBRA regulates Hippo signaling activity via interactions with large tumor suppressor kinases. J Biol Chem 2011; 286(10): 7788-96. google scholar
  • 17. Höffken V, Hermann A, Pavenstädt H, Kremerskothen J. WWC proteins: Important regulators of Hippo signaling in cancer. Cancers (Basel) 2021; 13(2): 1-15. google scholar
  • 18. Zhang X, Yang L, Szeto P, Abali GK, Zhang Y, Kulkarni A, et al. The Hippo pathway oncoprotein YAP promotes melanoma cell invasion and spontaneous metastasis. Oncogene 2020; 39(30): 526781. google scholar
  • 19. Nallet-Staub F, Marsaud V, Li L, Gilbert C, Dodier S, Bataille V, et al. Pro-invasive activity of the Hippo pathway effectors YAP and TAZ in cutaneous melanoma. J Invest Dermatol 2014; 134(1): 123-32. google scholar
  • 20. Chin L, Hahn WC, Getz G, Meyerson M. Making sense of cancer genomic data. Genes Dev 2011; 25(6): 534-55. google scholar
  • 21. Klonowska K, Czubak K, Wojciechowska M, Handschuh L, Zmienko A, Figlerowicz M, et al. Oncogenomic portals for the visualization and analysis of genome-wide cancer data. Oncotarget 2016; 7(1): 176-92. google scholar
  • 22. Knight JF, Sung VYC, Kuzmin E, Couzens AL, de Verteuil DA, Ratcliffe CDH, et al. KIBRA (WWC1) is a metastasis suppressor gene affected by chromosome 5q loss in triple-negative breast cancer. Cell Rep 2018; 22(12): 3191-205. google scholar
  • 23. Bastian BC. The molecular pathology of melanoma: An integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol Mech Dis 2014; 9(1): 239-71. google scholar
  • 24. Lin Z, Meng X, Wen J, Corral JM, Andreev D, Kachler K, et al. Intratumor heterogeneity correlates with reduced immune activity and worse survival in melanoma patients. Front Oncol 2020; 10: 596493. google scholar
  • 25. Cirenajwis H, Ekedahl H, Lauss M, Harbst K, Carneiro A, Enoksson J, et al. Molecular stratification of metastatic melanoma using gene expression profiling : Prediction of survival outcome and benefit from molecular targeted therapy. Oncotarget 2015; 6(14): 12297-309. google scholar
  • 26. Regad T. Molecular and cellular pathogenesis of melanoma initiation and progression. Cell Mol Life Sci 2013; 70(21):4055-65. google scholar
  • 27. Schelleckes K, Schmitz B, Ciarimboli G, Lenders M, Pavenstädt HJ, Herrmann E, et al. Promoter methylation inhibits expression of tumor suppressor KIBRA in human clear cell renal cell carcinoma. Clin Epigenetics 2017; 9(1):109. google scholar
  • 28. Stauffer S, Chen X, Zhang L, Chen Y, Dong J. KIBRA promotes prostate cancer cell proliferation and motility. FEBS J 2016; 283(10): 1800-11. google scholar
  • 29. Zhou P-J, Xue W, Peng J, Wang Y, Wei L, Yang Z, et al. Elevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the Hippo pathway. J Exp Clin Cancer Res 2017; 36(1): 139. google scholar
  • 30. Han Y. Analysis of the role of the Hippo pathway in cancer. J Transl Med 2019; 17(1): 116. google scholar
  • 31. Kobayashi M, Harada K, Negishi M, Katoh H. Dock4 forms a complex with SH3YL1 and regulates cancer cell migration Cell Signal 2014; 26(5): 1082-8. google scholar
  • 32. Jiang Q-Q, Liu W-B. miR-25 promotes melanoma progression by regulating RNA binding motif protein 47. Med Sci 2018; 34:59-65. google scholar
  • 33. Escudero-Esparza A. The claudin family and its role in cancer and metastasis. Front Biosci 2011; 16(1): 1069. google scholar
  • 34. Morita K, Morita NI, Nemoto K, Nakamura Y, Miyachi Y, Muto M. Expression of claudin in melanoma cells. J Dermatol 2007; 35(1): 36-8. google scholar
  • 35. Murray LB, Lau YK, Yu Q. Merlin is a negative regulator of human melanoma growth. Plos One 2012; 7(8): e43295. google scholar
  • 36. Reger de Moura C, Battistella M, Sohail A, Caudron A, Feugeas JP, Podgorniak M, et al. Discoidin domain receptors: A promising target in melanoma. Pigment Cell Melanoma Res 2019; pcmr.12809. google scholar
  • 37. Kito Y, Bai J, Goto N, Okubo H, Adachi Y, Nagayama T, et al. Patho-biological properties ofthe ubiquitin ligase Nedd4L in melanoma. Int J Exp Pathol 2014; 95(1): 24-8. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Kamer Çolak, D., Ünal, U., & Bolkent, S. (2022). In silico Evaluation of WWC1 in Melanoma Using Bioinformatic Analyses. European Journal of Biology, 81(2), 257-266. https://doi.org/10.26650/EurJBiol.2022.1168881


AMA

Kamer Çolak D, Ünal U, Bolkent S. In silico Evaluation of WWC1 in Melanoma Using Bioinformatic Analyses. European Journal of Biology. 2022;81(2):257-266. https://doi.org/10.26650/EurJBiol.2022.1168881


ABNT

Kamer Çolak, D.; Ünal, U.; Bolkent, S. In silico Evaluation of WWC1 in Melanoma Using Bioinformatic Analyses. European Journal of Biology, [Publisher Location], v. 81, n. 2, p. 257-266, 2022.


Chicago: Author-Date Style

Kamer Çolak, Dilara, and Ufuk Ünal and Sema Bolkent. 2022. “In silico Evaluation of WWC1 in Melanoma Using Bioinformatic Analyses.” European Journal of Biology 81, no. 2: 257-266. https://doi.org/10.26650/EurJBiol.2022.1168881


Chicago: Humanities Style

Kamer Çolak, Dilara, and Ufuk Ünal and Sema Bolkent. In silico Evaluation of WWC1 in Melanoma Using Bioinformatic Analyses.” European Journal of Biology 81, no. 2 (Nov. 2024): 257-266. https://doi.org/10.26650/EurJBiol.2022.1168881


Harvard: Australian Style

Kamer Çolak, D & Ünal, U & Bolkent, S 2022, 'In silico Evaluation of WWC1 in Melanoma Using Bioinformatic Analyses', European Journal of Biology, vol. 81, no. 2, pp. 257-266, viewed 25 Nov. 2024, https://doi.org/10.26650/EurJBiol.2022.1168881


Harvard: Author-Date Style

Kamer Çolak, D. and Ünal, U. and Bolkent, S. (2022) ‘In silico Evaluation of WWC1 in Melanoma Using Bioinformatic Analyses’, European Journal of Biology, 81(2), pp. 257-266. https://doi.org/10.26650/EurJBiol.2022.1168881 (25 Nov. 2024).


MLA

Kamer Çolak, Dilara, and Ufuk Ünal and Sema Bolkent. In silico Evaluation of WWC1 in Melanoma Using Bioinformatic Analyses.” European Journal of Biology, vol. 81, no. 2, 2022, pp. 257-266. [Database Container], https://doi.org/10.26650/EurJBiol.2022.1168881


Vancouver

Kamer Çolak D, Ünal U, Bolkent S. In silico Evaluation of WWC1 in Melanoma Using Bioinformatic Analyses. European Journal of Biology [Internet]. 25 Nov. 2024 [cited 25 Nov. 2024];81(2):257-266. Available from: https://doi.org/10.26650/EurJBiol.2022.1168881 doi: 10.26650/EurJBiol.2022.1168881


ISNAD

Kamer Çolak, Dilara - Ünal, Ufuk - Bolkent, Sema. In silico Evaluation of WWC1 in Melanoma Using Bioinformatic Analyses”. European Journal of Biology 81/2 (Nov. 2024): 257-266. https://doi.org/10.26650/EurJBiol.2022.1168881



TIMELINE


Submitted31.08.2022
Accepted25.11.2022
Published Online29.12.2022

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.