Research Article


DOI :10.26650/EurJBiol.2025.156009   IUP :10.26650/EurJBiol.2025.156009    Full Text (PDF)

Molecular Docking and Molecular Dynamics Analyses of Pazopanib with VEGF Receptors

Alev ErZeynep Çiçek ÖnemSefa ÇelikAyşen Erbölükbaş ÖzelSevim Akyüz

Objective: The antineoplastic agent Pazopanib is effective for treating renal cell cancer and soft tissue sarcoma. The aim of this study was to elucidate the anticancer mechanism of Pazopanib by exploring its molecular interactions with vascular endothelial growth factor receptors (VEGFRs). For this purpose, the most stable structure was determined, and molecular docking and molecular dynamics calculations of Pazopanib with VEGFR1 and VEGFR2 receptors were performed.

Materials and Methods: Conformational analysis of Pazopanib was performed using VegaZZ software. Pazopanib was docked to the active sites of the VEGFR1 and VEGR2 receptors (PDB IDs: 3HNG; 3VHE) using Autodock Vina software. The molecular dynamics (MD) simulations were carried out using the YASARA v22.9.24 program with the AMBER14 force field. The anticancer, antibacterial, antifungal, and antiviral activities of the compounds were predicted using PaccMann, AntiBac-Pred, AntiFun-Pred, and AntiVir-Pred.

Results: The molecular docking analysis of the Pazopanib molecule with the VEGFR1 and VEGFR2 receptors revealed a strong binding affinity of the investigated molecule towards the targets. The MD simulations, performed for Pazopanib-VEGFR1 and Pazopanib-VEGFR2 complexes showed that each docking complex and intermolecular interactions were stable throughout the simulations.

Conclusion: Molecular docking simulations revealed a strong binding affinity of Pazopanib towards VEGFR1 (-8.6 kcal/mol) and VEGFR2 (-9.9 kcal/mol), indicating its efficacy in cancer treatment. During the 40- ns MD simulation of the Pazopanib-3hng and Pazopanib-3vhe complexes, we validated the stability of Pazopanib in the active sites of the receptors. The predicted anticancer, antibacterial, antifungal, and antiviral activities of Pazopanib revealed its versatile bioactivity.


PDF View

References

  • Keisner SV, Shah SR. Pazopanib. Drugs. 2011;71(4):443-454. google scholar
  • Schutz FA, Choueiri TK, Sternberg CN. Pazopanib: Clinical development of a potent anti-angiogenic drug. Crit Rev Oncol Hematol. 2011;77(3):163-171. google scholar
  • Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res. 2000;55:15-35. google scholar
  • Chung AS, Ferrara N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol. 2011;27:563-584. google scholar
  • Ustun E, Sahin N. Analysis of interactions of NHC type molecules and NHC-Ag complexes with VEGFR-2 and DNA: A molecular docking study. Adiyaman Univ J Sci. 2021;11(1):113-125. google scholar
  • İvy SP, Wick JY, Kaufman BM. An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol. 2009;6(10):569-579. google scholar
  • Jayaraman S, Umapathy VR, Govindaraj J, Govidaraj K. Molecular docking analysis of vascular endothelial growth factor receptor with bioactive molecules from Piper longum as potential anti-cancer agents. Bioinformation. 2021;17(1):223-228. google scholar
  • Demirtas B. Küçük hücreli olmayan akciğer kanseri hücre hattında (a549) yeni bir tirozin kinaz inhibitörü olan Pazopanibin (gw786034) antianjiyojenik etkilerinin araştırılması, 2013, Yüksek Lisans Tezi, Anadolu Üniversitesi. google scholar
  • Soylemez CM. Pazopanib tedavisi alan metastatik yumuşak doku sarkomu hastalarında tedavi yanıtı ve bu durumu etkileyen faktörler, retrospektif analizi, 2021, Uzmanlık tezi, Ege Üniversitesi. google scholar
  • Van Der Graaf WT, Blay JY, Chawla SP, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial. The Lancet. 2012;379(9829):1879-1886. google scholar
  • Lee AT, Jones RL, Huang PH. Pazopanib in advanced soft tissue sarcomas. Signal Transduct Target Ther. 2019;4(1):1-10. google scholar
  • Ferlay J, Soerjomataram İ, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-E386. google scholar
  • Sternberg CN, Davis İD, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase İİİ trial. J Clin Oncol. 2010;28(6):1061-1068. google scholar
  • Li W, Feng C, Di W, et al. Clinical use of vascular endothelial growth factor receptor inhibitors for the treatment of renal cell carcinoma. Eur J Med Chem. 2020;200:112482. doi:10.1016/j.ejmech.2020.112482 google scholar
  • Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17(10):611-625. google scholar
  • Tzima E, Irani-Tehrani M, Kiosses, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005;437(7057):426-431. google scholar
  • Hurwitz HI, Dowlati A, Saini S, et al. Phase I trial of Pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15(12):4220-4227. google scholar
  • Pedretti A, Villa L, Vistoli G. VEGA: A versatile program to convert, handle and visualize molecular structure on Windows-based PCs. J Mol Graph Model. 2002;21(1):47-49. google scholar
  • Pedretti A, Villa L, Vistoli G. Atom-type description language: A universal language to recognize atom types implemented in the VEGA program. Theor. Chem. Acc. 2003;109(4):229-232. google scholar
  • Pedretti A, Villa L, Vistoli G. VEGA-an öpen platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des. 2004;18(3):167-173. google scholar
  • Jurcik A, Bednar D, Byska J, et al. CAVER Analyst 2.0: Analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics. 2018;34(20):3586-3588. google scholar
  • Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. google scholar
  • Krieger E, Vriend G. YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics. 2014;30(20):2981-2982. google scholar
  • Maier JA, Martinez C, Kasavajhala K, et al. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11(8):3696-3713. google scholar
  • Jakalian A, Jack DB, Bayly Cl. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 2002;23(16):1623-1641. google scholar
  • Meyer M, Pontikis V. Computer simulation in materials science: Interatomic potentials, simulation techniques and applications, Springer Science & Business Media; 2012. google scholar
  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys. 1995;103(19):8577-8593. google scholar
  • Dlala NA, Bouazizi Y, Ghalla H, Hamdi N. DFT calculations and molecular docking studies on a chromene derivative. J Chem. 2021;2021(1):6674261. doi:10.1155/2021/6674261 google scholar
  • Borkakoti N, Palmer RA. The structure of the bisbenzylisoquinoline alkaloid methylwarifteine. Acta Crystallogr. B. 1978;34(2):490-495. google scholar
  • Cox EG. Crystal structure of benzene. Rev Mod Phys. 1958;30(1):159. doi:10.1103/ RevModPhys.30.159 google scholar
  • Sloan B, Scheinfeld NS. Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Curr. Opin. Investig. Drugs. 2008;9(12):1324-1335. google scholar
  • Cubukcu E, Birol, O. Altmışbeş yaş üstü metastatik yumuşak doku sarkom hastalarında pazopanib tedavisinin etkinliğinin retrospektif değerlendirilmesi. Uludağ Üniversitesi Tıp Fakültesi Dergisi. 2019;45(1):83-86. google scholar
  • Schutz FA, Choueiri TK, Sternberg CN. Pazopanib: Clinical development of a potent anti-angiogenic drug. Crit Rev Oncol Hematol. 2011;77(3):163-171. google scholar
  • Sleijfer S, van der Graaf WT, Blay JY. Angiogenesis inhibition in non-GIST soft tissue sarcomas. The Oncologist. 2008;13(11):1193-1200. google scholar
  • DuBois S, Demetri G. Markers of angiogenesis and clinical features in patients with sarcoma. Cancer. 2007;109(5):813-819. google scholar
  • Tresaugues L, Roos A, Arrowsmith C, et al. Crystal structure of VEGFR1 in complex with N-(4-Chlorophenyl)-2-((pyridin-4-ylmethyl) amino) benzamide. 2013. doi: 10.2210/pdb3hng/pdb google scholar
  • Oguro Y, Miyamoto N, Okada K, et al. Design, synthesis, and evaluation of 5-methyl-4-phenoxy-5H-pyrrolo [3, 2-d] pyrimidine derivatives: Novel VEGFR2 kinase inhibitors binding to inactive kinase conformation. Bioorg Med Chem. 2010;18(20):7260-7273. google scholar
  • Wang Z, Wang X., Li Y., et al. farPPI: A webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB (GB) SA methods. Bioinformatics. 2019;35(10):1777-1779. google scholar
  • Hao GF, Jiang W, Ye YN, et al. ACFIS: A web server for fragment-based drug discovery. Nucleic Acids Res. 2016;44(W1):W550-W556. google scholar
  • Hao GF, Wang F, Li H, et al. Computational discovery of picomolar Q o site inhibitors of cytochrome bc 1 complex. J Am Chem Soc. 2012;134(27):11168-11176. google scholar
  • Yang JF, Wang F, Jiang W, et al. PADFrag: A database built for the exploration of bioactive fragment space for drug discovery. J Chem Inf Model. 2018;58(9):1725-1730. google scholar
  • Cheron N, Jasty N, Shakhnovich EI. OpenGrowth: An automated and rational algorithm for finding new protein ligands. J Med Chem. 2016;59(9):4171-4188. google scholar
  • Wang E, Sun H, Wang J, et al. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev. 2019;119(16):9478-9508. google scholar
  • Pogodin PV, Lagunin AA, Rudik AV, et al. AntiBac-Pred: A web application for predicting antibacterial activity of chemical compounds. J Chem Inf Model. 2019;59(11):4513-4518. google scholar
  • Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529(7586):336-343. google scholar
  • Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45(D1):D945-D954. google scholar
  • Fourches D, Muratov E, Tropsha A. Curation of chemogenomics data. Nat Chem Biol. 2015;11(8):535-535. google scholar
  • Pogodin PV, Lagunin AA, Filimonov DA, Poroikov VV. PASS Targets: Ligand-based multi-target computational system based on a public data and naıve Bayes approach. SAR QSAR Environ Res. 2015;26(10):783-793. google scholar
  • Pogodin PV, Lagunin AA, Rudik AV, et al. How to achieve better results using PASS-Based virtual screening: Case study for kinase inhibitors. Front Chem. 2018;6(133):1-14. google scholar
  • Filimonov DA, Lagunin AA, Gloriozova TA, et al. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd. 2014;50(3):444-457. google scholar
  • Zaidi Z, Sharma G, Sahaya Shibu B, et al. In silco prediction of pharmacological properties of the 2-(4-allylpiperazin-1-yl)-1-(1-(4-nitrophenyl)-1h-tetrazol-5-yl) ethanone. Afr J Biol Sci. 2024;6:2522-2540. google scholar
  • Cadow J, Born J, Manica M, Oskooei A, Rodrıguez Martinez M. PaccMann: A web service for interpretable anticancer compound sensitivity prediction. Nucleic Acids Res. 2020;48(W1):W502-W508. google scholar
  • Kuzu B, Karakuş F. Natural compounds targeting VEGFRs in kidney cancer: An in silico prediction. JIST. 2022;12(3):1711-1722. google scholar
  • Bharathi D, Boopathy RA. In silico studies on colon cancer against hexadecane, hexadecanoic acid methyl ester and quinoline, 1, 2-dihydro-2, 2, 4-trimethyl compounds from brown seaweed. IJRPS. 2020;11(2):1927-1935. google scholar
  • Kouassi K, Ganiyou A, Didier D, Benie A, Nahosse Z. In silico docking of rhodanine derivatives and 3D-QSAR study to identify potent prostate cancer inhibitors. Comput Chem. 2022;10(2):19-52. google scholar
  • Mendie LE, Hemalatha S. Molecular docking of phytochemicals targeting GFRs as therapeutic sites for cancer: An in silico study. Appl Biochem Biotechnol. 2022;194(1):215-231. google scholar
  • Lu SL, Noda T. VEGF (vascular endothelial growth factor) provides antimicrobial effects via autophagy and lysosomal empowerment in endothelial cells. Autophagy Reports. 2022;1(1):555-558. google scholar
  • Amiri-Kordestani L, Tan AR, Swain SM. Pazopanib for the treatment of breast cancer. Expert Opin Investig Drugs. 2012;21(2):217-225. google scholar
  • Zhao H,Yang F, Shen W, et al. Pazopanib diminishes non-small celi lung cancer (NSCLC) growth and metastases in vivo. Thorac Cancer. 2015;6(2):133-140. google scholar
  • Roberts JL, Tavallai M, Nourbakhsh A, et al. GRP78/Dna K is a target for Nexavar/ Stivarga/Votrient in the treatment of human malignancies, viral infections and bacterial diseases. J Cell Physiol. 2015;230(10):2552-2578. google scholar
  • Kaur N, Aggarwal AK, Sharma N, Choudhary B. Synthesis and in-vitro antimicrobial activity of pyrimidine derivatives. Int J Pharm Sci Drug Res. 2012;4(3):199-204. google scholar
  • Abdel-Mohsen HT, Ragab FA, Ramla MM, El Diwani Hl. Novel benzimidazole-pyrimidine conjugates as potent antitumor agents. Eur J Med Chem. 2010;45(6):2336-2344. google scholar
  • Sirisoma N, Kasibhatla S, Nguyen B, et al. Discovery of substituted 4-anilino-2-(2-pyridyl) pyrimidines as a new series of apoptosis inducers using a cell-and caspase-based high throughput screening assay. Part 1: Structure-activity relationships of the 4-anilino group. Bioorg Med Chem. 2006;14(23):7761-7773. google scholar
  • Xie F, Zhao H, Zhao L, Lou L, Hu Y. Synthesis and biological evaluation of novel 2, 4, 5-substituted pyrimidine derivatives for anticancer activity. Bioorg Med Chem Lett. 2009;19(1):275-278. google scholar
  • Kamal A, Dastagiri D, Ramaiah MJ, et al. Synthesis and apoptosis inducing ability of new anilino substituted pyrimidine sulfonamides as potential anticancer agents. Eur J Med Chem. 2011;46(12):5817-5824. google scholar
  • Pontikis R, Benhida R, Aubertin AM, Grierson DS, Monneret C. Synthesis and anti-HIV activity of novel N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy) methyl]-6-(phenylthio) thymine (HEPT). J Med Chem. 1997;40(12):1845-1854. google scholar
  • Lu X, Chen Y, Guo Y, et al. The design and synthesis of N-1-alkylated-5-aminoaryalkylsubstituted-6-methyluracils as potential non-nucleoside HIV-1 RT inhibitors. Bioorg Med Chem. 2007;15(23):7399-7407. google scholar
  • Das K, Clark Jr. AD, Lewi PJ, et al. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J Med Chem. 2004;47(10):2550-2560. google scholar
  • Summa V, Petrocchi A, Bonelli F, et al. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem. 2008;51:5843-5855. google scholar
  • Tagat JR, McCombie SW, Nazareno D, et al. Piperazine-based CCR5 antagonists as HIV-1 inhibitors. IV.Discovery of 1-[(4,6-dimethyl-5-pyrimidinyl)carbonyl]-4-[4-[2-methoxy-1(R)-4-(trifluoromethyl)phenyl]ethyl-3(S)-methyl-1-piperazinyl]-4-methylpipe ridine(Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. J Med Chem. 2004;47:2405-2408. google scholar
  • Huckova D, Holy A, Masojidkova M, et al. Synthesis and antiviral activity of 2,4-diamino-5-cyano-6-[2-(phosphonomethoxy)ethoxy]pyrimidine and related compounds. Bioorg Med Chem. 2004;12(12):3197-3202. google scholar
  • Deshmukh MB, Salunkhe SM, Patil DR, Anbhule PV. A novel and efficient one step synthesis of 2-amino-5-cyano-6-hydroxy-4-arylpyrimidines and their anti bacterial activity. Eur J Med Chem. 2009;44:2651-2654. google scholar
  • Roth B, Strelitz JZ, Rauckman BS. 2,4-Diamino-5-benzylpyrimidines and analogs as antibacterial agents.2.C-Alkylation of pyrimidines with Mannich bases and application to the synthesis of trimethoprim and analogs. J Med Chem. 1980;23(3):379-384. google scholar
  • Chandrashekaran S, Nagarajan S. Microwave-assisted synthesis and anti-bacterial activity of some 2-Amino-6-aryl-4-(2-thienyl) pyrimidines. IL Farmaco. 2005;60:279-282. google scholar
  • Mai A, Rotili D, Massa S, et al. Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal resistance and trailing growth in Candida albicans. Bioorg Med Chem Lett. 2007;17:1221-1225. google scholar
  • Gholap AR, Toti KS, Shirazi F, Deshpande MV, Srinivasan KV. Efficient synthesis of antifungal pyrimidines via Palladium catalyzed Suzuki/Sonogashira cross-coupling reaction from Biginelli 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron. 2008;64:10214-10223. google scholar
  • Ingaral N, Saravanan G, Amutha P, Nagarajan S. Synthesis, in vitro antibacterial and antifungal evaluations of 2-amino-4-(1-naphthyl)-6-arylpyrimidines. Eur J Med Chem. 2007;42:517-520. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Er, A., Çiçek Önem, Z., Çelik, S., Özel, A.E., & Akyüz, S. (2019). Molecular Docking and Molecular Dynamics Analyses of Pazopanib with VEGF Receptors. European Journal of Biology, 0(0), -. https://doi.org/10.26650/EurJBiol.2025.156009


AMA

Er A, Çiçek Önem Z, Çelik S, Özel A E, Akyüz S. Molecular Docking and Molecular Dynamics Analyses of Pazopanib with VEGF Receptors. European Journal of Biology. 2019;0(0):-. https://doi.org/10.26650/EurJBiol.2025.156009


ABNT

Er, A.; Çiçek Önem, Z.; Çelik, S.; Özel, A.E.; Akyüz, S. Molecular Docking and Molecular Dynamics Analyses of Pazopanib with VEGF Receptors. European Journal of Biology, [Publisher Location], v. 0, n. 0, p. -, 2019.


Chicago: Author-Date Style

Er, Alev, and Zeynep Çiçek Önem and Sefa Çelik and Ayşen Erbölükbaş Özel and Sevim Akyüz. 2019. “Molecular Docking and Molecular Dynamics Analyses of Pazopanib with VEGF Receptors.” European Journal of Biology 0, no. 0: -. https://doi.org/10.26650/EurJBiol.2025.156009


Chicago: Humanities Style

Er, Alev, and Zeynep Çiçek Önem and Sefa Çelik and Ayşen Erbölükbaş Özel and Sevim Akyüz. Molecular Docking and Molecular Dynamics Analyses of Pazopanib with VEGF Receptors.” European Journal of Biology 0, no. 0 (Jun. 2025): -. https://doi.org/10.26650/EurJBiol.2025.156009


Harvard: Australian Style

Er, A & Çiçek Önem, Z & Çelik, S & Özel, AE & Akyüz, S 2019, 'Molecular Docking and Molecular Dynamics Analyses of Pazopanib with VEGF Receptors', European Journal of Biology, vol. 0, no. 0, pp. -, viewed 4 Jun. 2025, https://doi.org/10.26650/EurJBiol.2025.156009


Harvard: Author-Date Style

Er, A. and Çiçek Önem, Z. and Çelik, S. and Özel, A.E. and Akyüz, S. (2019) ‘Molecular Docking and Molecular Dynamics Analyses of Pazopanib with VEGF Receptors’, European Journal of Biology, 0(0), pp. -. https://doi.org/10.26650/EurJBiol.2025.156009 (4 Jun. 2025).


MLA

Er, Alev, and Zeynep Çiçek Önem and Sefa Çelik and Ayşen Erbölükbaş Özel and Sevim Akyüz. Molecular Docking and Molecular Dynamics Analyses of Pazopanib with VEGF Receptors.” European Journal of Biology, vol. 0, no. 0, 2019, pp. -. [Database Container], https://doi.org/10.26650/EurJBiol.2025.156009


Vancouver

Er A, Çiçek Önem Z, Çelik S, Özel AE, Akyüz S. Molecular Docking and Molecular Dynamics Analyses of Pazopanib with VEGF Receptors. European Journal of Biology [Internet]. 4 Jun. 2025 [cited 4 Jun. 2025];0(0):-. Available from: https://doi.org/10.26650/EurJBiol.2025.156009 doi: 10.26650/EurJBiol.2025.156009


ISNAD

Er, Alev - Çiçek Önem, Zeynep - Çelik, Sefa - Özel, AyşenErbölükbaş - Akyüz, Sevim. Molecular Docking and Molecular Dynamics Analyses of Pazopanib with VEGF Receptors”. European Journal of Biology 0/0 (Jun. 2025): -. https://doi.org/10.26650/EurJBiol.2025.156009



TIMELINE


Submitted02.10.2024
Accepted15.01.2025
Published Online18.03.2025

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE



Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.