Solvation Methods Affect the Amount of Active Components in the Extract of Propolis as well as Its Anti-Inflammatory Activity in THP-1 Cells
Burak Durmaz, Latife Merve Oktay Çelebi, Hikmet Memmedov, Nur Selvi Günel, Hatice Kalkan Yıldırım, Eser Yıldırım SözmenObjective: Propolis has been found to have various effects, including antioxidant and anti-inflammatory properties, according to studies. In this recent research, we discovered that reducing allergenic compounds in propolis through biotransformation using specific Lactobacillus plantarum strains enhanced its anti-inflammatory qualities. The study aimed to identify the extraction methods and solvents that had the most significant anti-inflammatory effects and assess how L. plantarum strains biotransformation of propolis affected these qualities in THP-1 cell line cultures.
Materials and Methods: Propolis samples were biotransformed with different concentrations (1.5%, 2.5%, 3.5%) of several L. plantarum strains (ISLG-2, ATCC®8014, visbyvac) before extraction using various solvents (ethanol, polyethylene glycol-PEG, water) and ultrasound treatments (300 W/40 Hz for 5, 10, 15 min). Liquid chromatography-mass spectrometer/mass spectrometry was used for phenolic analysis of the samples. ELISA test kits were employed to assess NF-kβ, IL-1α, IL-1β, IL-6, IL-10, TNF-α, IFN-γ , COX-1 in the cell culture supernatant.
Results: Results showed that, except for NF-kβ, all cytokine levels decreased in four separate propolis samples. Caffeic acid, kaempferol, ferulic acid, quercetin, pelargonin, and naringenin were the key physiologically active components associated with the anti-inflammatory activity of propolis. The biotransformation process to reduce allergen compounds did not alter propolis’s anti-inflammatory properties.
Conclusion: In samples that were dissolved in water, dissolved in ethanol+biotransformed with L. plantarum ATCC®8014, dissolved in water+biotransformed with L. plantarum ATCC®8014, and dissolved in water+sonicated for 15 min and biotransformed with L. plantarum ATCC®8014, the maximum anti-inflammatory effect of propolis was assessed.