Review Article


DOI :10.26650/EurJBiol.2025.1464094   IUP :10.26650/EurJBiol.2025.1464094    Full Text (PDF)

The Myriad Role of Human Endogenous Retroviruses in the Pathogenesis of Diseases

Yachna SoniSomya SharmaAnjali ChaudharyKanika ChaturvediJasmeet SinghSainsh SharmaJayant MainiKapila Kumar

Human endogenous retroviruses (HERVs) are the remains of primitive retroviruses that entered the bodies of primates and incorporated themselves into their genomes millions of years ago. Currently, HERVs comprise approximately 8% of the human genome, and their roles and functions remain to be elucidated. However, HERVs have been demonstrated to potentially contribute to pathological roles in several dis0 eases, including autoimmune diseases like rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and several neurodegenerative diseases. They have also been found to play a significant twin role in establishing cancerous as well as anti0cancer responses in the body. The identification of HERVs in numerous types of cancers makes them important candidates to be considered biomarkers for the disease and can lead to the development of innovative therapy approaches. HERV expression has also been highlighted in various aspects of host immune response by various mechanisms summarised systematically in the review. A comprehensive review of HERVs must better understand their pathogenic consequences. This study provides subtle insights into the delicate association between HERVs and various disorders, which may aid in the identification of potential diagnostic markers and therapeutic targets. This review systematically summarises the intricate regulatory mechanisms of HERVs and their functions in the development/ progression of these diseases. It is a humble effort to highlight this area of importance to the scientific community. 


PDF View

References

  • Turner G, BarbuLescu M, Su M, Jensen-Seaman MI, Kidd KK, Lenz J. InsertionaL poLYmorphisms of full-Length endogenous retroviruses in humans. Curr BioL. 2OO1;11(19):1531-1535. google scholar
  • BeLshaw R, Dawson AL, WooLven-ALLen J, Redding J, Burt A, Tristem M. Genomewide screening reveaLs high LeveLs of insertionaL poLYmorphism in the human endogenous retrovirus famiLY HERV-K(HML2): ImpLications for present-day activity. J Virol. 2005;79(l9):12507-12514. google scholar
  • Costas J. EvoLutionary dynamics of the human endogenous retrovirus family HERV-K inferred from full-Length proviraL genomes. J Mol Evol. 2001;53(3):237-243. google scholar
  • BradY T, Lee YN, Ronen K, et aL. Integration target site seLection by a resurrected human endogenous retrovirus. Genes Dev. 2009;23(5):633-642. google scholar
  • Song Y, Li X, Wei X, Cui J. Human endogenous retroviruses as biomedicine markers. Virologica Sinica. 2021;36(5):852-858. google scholar
  • Türkmen S, Riehn M, KLopocki E, MoLkentin M, Reinhardt R, Burmeister T. A BACH2-BCL2L1 fusion gene resuLting from a t(6;20)(q15;q11.2) chromosomaL transLocation in the LYmphoma ceLL Line BLUE-1. Genes Chromosomes Cancer. 2011;50(6):389-396. google scholar
  • MangeneY M, Renard M, SchLecht-Louf G, et aL. PLacentaL sYncYtins: Genetic disjunction between the fusogenic and immunosuppressive activitY of retroviraL enveLope proteins. Proc Natl AcaD Sci USA.. 2007;104(5l):20534-20539. google scholar
  • Panda A, de Cubas AA, Stein M, et aL. Endogenous retrovirus expression is associated with response to immune checkpoint bLockade in cLear ceLL renaL ceLL carcinoma. JCI Insighi. 2018;3(16):e121522. doi:10.1172/jci.insight.121522 google scholar
  • Schommer S, Sauter M, KraussLich HG, Best B, MueLLer-Lantzsch N. Characterization of the human endogenous retrovirus K proteinase. J Gen Virol. 1996;77(Pt2):375-379. google scholar
  • HenzY JE, Coffin JM. BetaretroviraL enveLope subunits are noncovaLentLY Associated and restricted to the mammaLian cLass. J Virol. 2013;87(4):1937-1946. google scholar
  • KjeLLman C, Sjögren HO, Widegren B. HERV-F, a new group of human endogenous retrovirus sequences. J Gen Virol. 1999;80(Pt 9):2383-2392 google scholar
  • Vargiu L, Rodriguez-Tome P, Sperber GO, et aL. CLassification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology. 2016;13:7. doi:10.1186/s12977-015-0232-y google scholar
  • TokuYama M, Kong Y, Song E, JaYewickreme T, Kang I, Iwasaki A. ERVmap anaLYsis reveaLs genome-wide transcription of human endogenous retroviruses. Proc Natl AcaD Sci USA. 2018;115(50):12565-12572. google scholar
  • NevaLainen T, Autio A, Hurme M. Human endogenous retroviruses of the HERV-K (HML-2) famiLy are expressed in the brain of heaLthy individuaLs and modify the composition of the brain-infiLtrating immune ceLLs. Heliyon. 2023;9(ll):e21283. doi:10.1016/j.heLiYon.2023.e21283 google scholar
  • Jakobsson J, Vincendeau M. SnapShot: Human endogenous retroviruses. Cell. 2022;185(2):400-400.e1. doi:10.1016/j.ceLL.202112.028 google scholar
  • Herve CA, LugLi EB, Brand A, Griffiths DJ, VenabLes PJ. Autoantibodies to human endogenous retrovirus-K are frequentLy detected in heaLth and disease and react with muLtipLe epitopes. Clin Exp Immunol. 2002;128(l):75-82. google scholar
  • ALfahad T, Nath A. Retroviruses and amYotrophic LateraL scLerosis. Antiviral Res. 2013;99(2):180-187. google scholar
  • Gröger V, Cynis H. Human endogenous retroviruses and their putative role in the development of autoimmune disorders such as multiple sclerosis. Front Microbiol. 2018;9:265. doi:10.3389/fmicb.2018.00265 google scholar
  • Balada E, Vilardell-Tarres M, Ordi-Ros J. Implication of humarı endogenous retroviruses in the development of autoimmune diseases. Int Rev Immunol. 2010;29(4):351-370. google scholar
  • Perl A, Colombo E, Dai H, et al. Antibody reactivity to the HRES-1 endogenous retroviral element identifies a subset of patients with systemic lupus erythematosus and overlap syndromes. Correlation with antinuclear antibodies and HLA class II alleles. Arthritis Rheum. 1995;38(ll):1660-1671. google scholar
  • Li JM, Fan WS, Horsfall AC, et al. The expression of human endogenous retrovirus-3 in fetal cardiac tissue and antibodies in congenital heart block. Clin Exp Immunol. 1996;104(3):388-393. google scholar
  • Torres BA, Kominsky S, Perrin GQ, Hobeika AC, Johnson HM. Superantigens: The good, the bad, and the ugly. Exp Biol Med (Maywood). 2001;226(3):164-176. doi:10.1177/153537020122600303 google scholar
  • Tosato G, Steinberg AD, Yarchoan R, et al. Abnormally elevated frequency of Epstein-Barr virus-infected B cells in the blood of patients with rheumatoid arthritis. J Clin Invest. 1984;73(6):1789-1795. google scholar
  • Balandraud N, Guis S, Meynard JB, Auger I, Roudier J, Roudier C. Long-term treatment with methotrexate or tumor necrosis factor alpha inhibitors does not increase epstein-barr virüs load in patients with rheumatoid arthritis. Arthritis Rheum. 2007;57(5):762-767. google scholar
  • James JA, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJ, Harley JB. An increased prevalence of Epstein-Barr virüs infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest. 1997;100(l2):3019-3026. google scholar
  • Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT. Epstein-Barr virüs transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity. 2001;15(4):579-589. google scholar
  • Sicat J, Sutkowski N, Huber BT. Expression of human endogenous retrovirus HERV-K18 superantigen is elevated in Juvenile rheumatoid arthritis. J Rheumatol. 2005;32(9):1821-1831. google scholar
  • Nakkuntod J, Sukkapan P, Avihingsanon Y, Mutirangura A, Hirankarn N. DNA methylation of human endogenous retrovirus in systemic lupus erythematosus. J Hum Genet. 2013;58(5):241-249. google scholar
  • Posso-Osorio I, Tobon GJ, Canas CA. Human endogenous retroviruses (HERV) and non-HERV viruses incorporated into the human genome and their role in the development of autoimmune diseases. J Transl Autoimmun. 2021;4:100137. doi:10.1016/J.Jtauto.2021.100137 google scholar
  • Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356-361. google scholar
  • Perl A. Pathogenesis and spectrum of autoimmunity. Methods Mol Med. 2004;102:1-8. doi:10.1385/1-59259-805-6:001 google scholar
  • Stransky G, Vernon J, Aicher WK, Moreland LW, Gay RE, Gay S. Virus-like particles in synovial fluids from patients with rheumatoid arthritis. Br J Rheumatol. 1993;32(l2):1044-1048. google scholar
  • Ogasawara H, Hishikawa T, Sekigawa I, Hashimoto H, Yamamoto N, Maruyama N. Sequence analysis of human endogenous retrovirus clone 4-1 in systemic lupus erythematosus. Autoimmunity. 2000;33(l):15-21. doi:10.3109/08916930108994105 van Horssen J, van der Pol S, NiJland P, Amor S, Perron H. Human endogenous retrovirus W in brain lesions: Rationale for targeted therapy in multiple sclerosis. Muit Scler Relat Disord. 2016;8:11-18. google scholar
  • Brudek T, Christensen T, Aagaard L, Petersen T, Hansen HJ, M0ller-Larsen A. B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity. Retrovirology. 2009;6:104. doi:10.1186/1742-4690-6-104 google scholar
  • Li W, Lee MH, Henderson L, et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med. 2015;7(307):307ra153. doi:10.1126/ scitranslmed.aac8201 google scholar
  • Wu Z, Mei X, Zhao D, et al. DNA methylation modulates HERV-E expression in CD4+ T cells from systemic lupus erythematosus patients. J Dermatol Sci. 2015;77(2):110-116. google scholar
  • Mameli G, Erre GL, Caggiu E, et al. Identification of a HERV-K env surface peptide highly recognized in Rheumatoid Arthritis (RA) patients: A cross-sectional case-control study. Clin Exp Immunol. 2017;189(l):127-131. google scholar
  • Nelson PN, Roden D, Nevill A, et al. Rheumatoid arthritis is associated with IgG antibodies to human endogenous retrovirus gag matrix: A potential pathogenic mechanism of disease? J Rheumatol. 2014;4l(l0):1952-1960. google scholar
  • Tam OH, Ostrow LW, Gale Hammell M. Diseases of the nERVous system: Retrotransposon activity in neurodegenerative disease. Mob DNA. 2019;10:32. doi:10.1186/s13100-019-0176-1 google scholar
  • Antony JM, van Marle G, Opii W, et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci. 2004;7(l0):1088-1095. google scholar
  • Perron H, Garson JA, Bedin F, et al. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci USA. 1997;94(l4):7583-7588. google scholar
  • Perron H, Germi R, Bernard C, et al. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Muit Scler. 2O12;18(12):1721-1736. google scholar
  • Garson JA, Tuke PW, Giraud P, Paranhos-Baccala G, Perron H. Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet. 1998;35l(9095):33. doi:10.1016/s0140-6736(98)240 01-3 google scholar
  • Römer C. Viruses and endogenous retroviruses as roots for neuroinflammation and neurodegenerative diseases. Front Neurosci. 2021;15:648629. doi:10.3389/ fnins.2021.648629 google scholar
  • Ruprecht K, OboJes K, Wengel V, et al. Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: Implications for multiple sclerosis. J Neurovirol. 2006;12(l):65-71. doi:10.1080/13550280600614973 google scholar
  • Balestrieri E, Pica F, Matteucci C, et al. Transcriptional activity of human endogenous retroviruses in human peripheral blood mononuclear cells. Biomed Res Int. 2015;2015:164529. doi:10.1155/2015/164529 google scholar
  • Cianciolo GJ, Copeland TD, Oroszlan S, Snyderman R. Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science. 1985;230(4724):453-455. google scholar
  • Schlecht-Louf G, Renard M, Mangeney M, et al. Retroviral infection in vivo requires an immune escape virulence factor encrypted in the envelope protein of oncoretroviruses. Proc Natl Acad Sci USA. 2010;107(8):3782-3787. google scholar
  • Hummel J, Kammerer U, Müller N, Avota E, Schneider-Schaulies S. Human endogenous retrovirus envelope proteins Target dendritic cells to suppress T-cell activation. Eur J Immunol. 2015;45(6):1748-1759. google scholar
  • Katoh I, Mîrovâ A, Kurata S, et al. Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. Neoplasia. 2011;13(ll):1081-1092. google scholar
  • Menendez L, Benigno BB, McDonald JF. L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas. Mol Cancer. 2004;3:12. doi:10.1186/1476-4598-3-12 google scholar
  • Stengel S, Fiebig U, Kurth R, Denner J. Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. Genes Chromosomes Cancer. 2010;49(5):401-411. doi:10.1002/gcc.20751 google scholar
  • Strissel PL, Ruebner M, Thiel F, et al. Reactivation of codogenic endogenous retroviral (ERV) envelope genes in human endometrial carcinoma and prestages: Emergence of new molecular targets. Oncotarget. 2012;3(l0):1204-1219. google scholar
  • Krönung SK, Beyer U, Chiaramonte ML, Dolfini D, Mantovani R, Dobbelstein M. LTR12 promoter activation in a broad range of human tumor cells by HDAC inhibition. Oncotarget. 2016;7(23):33484-33497. google scholar
  • Brookes E, Shi Y. Diverse epigenetic mechanisms of human disease. Annu Rev Genet. 2014;48:237-268. google scholar
  • Sheng W, LaFleur MW, Nguyen TH, et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell. 2018;174(3):549-563.e19. doi:10.1016/J.cell.2018.05.052 google scholar
  • Liu M, Thomas SL, DeWitt AK, et al. Dual inhibition of DNA and histone methyltransferases increases viral mimicry in ovarian cancer cells. Cancer Res. 2018;78(20):5754-5766. google scholar
  • Matsui T, Leung D, Miyashita H, et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET [published correction appears in Natura. 2014 Sep 4;513(7516):128]. Natura. 2010;464(7290):927-931. google scholar
  • Bagher Pour O, Yahyavi Y, Karimi A, et al. Serum trace elements levels and clinical outcomes among Iranian COVID-19 patients. Int J Infect Dis. 2021;111:164-168. doi:10.1016/j.ijid.2021.08.053 google scholar
  • Conti A, Rota F, Ragni E, et al. Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells. Biochem Biophys Res Commun. 2016;474(4):691-695. google scholar
  • Alqahtani S, Promtong P, Oliver AW, et al. Silver nanoparticles exhibit size-dependent diFFerential toxicity and induce expression oF syncytin-1 in FA-AML1 and MOLT-4 leukaemia celi Lines. Mutagenesis. 2016;3l(6):695-702. google scholar
  • Reiche J, Pauli G, Ellerbrok H. DiFFerential expression oF human endogenous retrovirus K transcripts in primary human melanocytes and melanoma cell Lines aFter UV irradiation. Melanoma Res. 2010;20(5):435-440. google scholar
  • Shiuan E, Reddy A, Dudzinski SO, et al. Clinical Features and multiplatForm molecular analysis assist in understanding patient response to anti-PD-1/ PD-L1 in renal celi carcinoma. Cancers (Basel). 2021;13(6):1475. doi:10.3390/ cancers13061475 google scholar
  • Wallace TA, Downey RF, SeuFert CJ, et al. Elevated HERV-K mRNA expression in PBMC is associated with a prostate cancer Wallace diagnosis particularly in older men and smokers. Carcinogenesis. 2014;35(9):2074-2083. google scholar
  • Rycaj K, Tang DG. Cell-oF-origin oF cancer versus cancer stem cells: Assays and interpretations. Cancer Res. 2015;75(l9):4003-4011. google scholar
  • Wang-Johanning F, Li M, Esteva FJ, et al. Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers oF early-stage breast cancer. Int J Cancer. 2014;134(3):587-595. google scholar
  • HaFFner MC, Taheri D, Luidy-lmada E, et al. Hypomethylation, endogenous retrovirus expression, and interFeron signaling in testicular germ cell tumors. Proc Natl AcaD Sci USA. 2018;115(37):E8580-E8582. google scholar
  • Roulois D, Loo Yau H, Singhania R, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Celi. 2015;162(5):961-973. google scholar
  • RakoFF-Nahoum S, Hao L, Medzhitov R. Role oF toll-like receptors in spontaneous commensal-dependent colitis. Immunity. 2006;25(2):319-329. google scholar
  • Schmitz-Winnenthal FH, Galindo-Escobedo LV, Rimoldi D, et al. Potential target antigens For immunotherapy in human pancreatic cancer. Cancer Lett. 2007;252(2):290-298. google scholar
  • Kanetsky PA, Rebbeck TR, Hummer AJ, et al. Population-based study oF natural variation in the melanocortin-1 receptor gene and melanoma. Cancer Res. 2006;66(l8):9330-9337. google scholar
  • Hahn S, Ugurel S, Hanschmann KM, et al. Serological response to human endogenous retrovirus K in melanoma patients correlates with survival probability. AIDS Res Hum Retroviruses. 2008;24(5):717-723. doi:10.1089/ aid.2007.0286 google scholar
  • Krishnamurthy J, Rabinovich BA, Mi T, et al. Genetic engineering oF T cells to Target HERV-K, an ancient retrovirus on melanoma. Clin Cancer Res. 2015;2l(l4):3241-3251. google scholar
  • Kleiman A, Senyuta N, Tryakin A, et al. HERV-K(HML-2) GAG/ENV antibodies as indicator For therapy eFFect in patients with germ cell tumors. Int J Cancer. 2004;110(3):459-461. google scholar
  • Li M, Radvanyi L, Yin B, et al. Correction: Downregulation oF Human Endogenous Retrovirus Type K (HERV-K) Viral env RNA in pancreatic cancer cells decreases cell proliFeration and tumor growth. Clin Cancer Res. 2019;25(9):2936. doi:10.1158/1078-0432.CCR-19-0700 google scholar
  • Ma W, Hong Z, Liu H, et al. Human endogenous retroviruses-K (HML-2) expression is correlated with prognosis and progress oF hepatocellular carcinoma. BiomeD Res Int. 2016;2016:8201642. doi:10.1155/2016/8201642 google scholar
  • Li T, Zhang C, Ding Y, et al. Umbilical cord-derived mesenchymal stem cells promote proliFeration and migration in MCF-7 and MDA-MB-231 breast cancer cells through activation oF the ERK pathway. Oncol Rep. 2015;34(3):1469-1477. google scholar
  • Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL. Quantitation oF HERV-K env gene expression and splicing in human breast cancer. Oncogene. 2003;22(l0):1528-1535. google scholar
  • Garcia-Montojo M, Doucet-O'Hare T, Henderson L, Nath A. Human endogenous retrovirus-K (HML-2): A comprehensive review. Crit Rev MicroBiol. 2018;44(6):715-738. google scholar
  • Montesion M, Williams ZH, Subramanian RP, Kuperwasser C, CoFfin JM. Promoter expression oF HERV-K (HML-2) provirus-derived sequences is related to LTR sequence variation and polymorphic transcription Factor binding sites. Retrovirology. 2018;15(l):57. doi:10.1186/s12977-018-0441-2 google scholar
  • Fuchs NV, KraFt M, Tondera C, Hanschmann KM, Löwer J, Löwer R. Expression oF the human endogenous retrovirus (HERV) group HML-2/HERV-K does not depend on canonical promoter elements but is regulated by transcription Factors Sp1 and Sp3. J Virol. 2011;85(7):3436-3448. google scholar
  • Knössl M, Löwer R, Löwer J. Expression oF the human endogenous retrovirus HTDV/HERV-K is enhanced by cellular transcription Factor YY1. J Virol. 1999;73(2):1254-1261. google scholar
  • Ohtani H, Liu M, Zhou W, Liang G, Jones PA. Switching roles For DNA and histone methylation depend on evolutionary ages oF human endogenous retroviruses. Genome Res. 2018;28(8):1147-1157. google scholar
  • Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing oF tumor suppressor genes: Paradigms, puzzles, and potential. Biochim Biophys Acta. 2016;1865(2):275-2 8 8. google scholar
  • Szpakowski S, Sun X, Lage JM, et al. Loss oF epigenetic silencing in tumors preFerentially aFFects primate-specific retroelements. Gene. 2009;448(2):151-167. google scholar
  • Campos-Sânchez R, Cremona MA, Pini A, Chiaromonte F, Makova KD. Integration and fixation preFerences oF human and mouse endogenous retroviruses uncovered with Functional data analysis. PLoS Comput Biol. 2016;12(6):e1004956. doi:10.1371/journal.pcbi.1004956 google scholar
  • Dai L, Del Valle L, Miley W, et al. Transactivation oF human endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi's sarcoma development [published correction appears in Oncogene. 2024 Jul;43(30):2372. doi: 10.1038/s41388-024-03083-4]. Oncogene. 2018;37(33):4534-4545. doi:10.1038/ s41388-018-0282-4 google scholar
  • Gonzalez-Hernandez MJ, Cavalcoli JD, Sartor MA, et al. Regulation oF the human endogenous retrovirus K (HML-2) transcriptome by the HIV-1 Tat protein. J Virol. 2014;88(l6):8924-8935. google scholar
  • TouFaily C, Landry S, Leib-Mosch C, Rassart E, Barbeau B. Activation oF LTRs From diFFerent human endogenous retrovirus (HERV) Families by the HTLV-1 tax protein and T-cell activators. Viruses. 2O11;3(11):2146-2159. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Soni, Y., Sharma, S., Chaudhary, A., Chaturvedi, K., Singh, J., Sharma, S., Maini, J., & Kumar, K. (2019). The Myriad Role of Human Endogenous Retroviruses in the Pathogenesis of Diseases. European Journal of Biology, 0(0), -. https://doi.org/10.26650/EurJBiol.2025.1464094


AMA

Soni Y, Sharma S, Chaudhary A, Chaturvedi K, Singh J, Sharma S, Maini J, Kumar K. The Myriad Role of Human Endogenous Retroviruses in the Pathogenesis of Diseases. European Journal of Biology. 2019;0(0):-. https://doi.org/10.26650/EurJBiol.2025.1464094


ABNT

Soni, Y.; Sharma, S.; Chaudhary, A.; Chaturvedi, K.; Singh, J.; Sharma, S.; Maini, J.; Kumar, K. The Myriad Role of Human Endogenous Retroviruses in the Pathogenesis of Diseases. European Journal of Biology, [Publisher Location], v. 0, n. 0, p. -, 2019.


Chicago: Author-Date Style

Soni, Yachna, and Somya Sharma and Anjali Chaudhary and Kanika Chaturvedi and Jasmeet Singh and Sainsh Sharma and Jayant Maini and Kapila Kumar. 2019. “The Myriad Role of Human Endogenous Retroviruses in the Pathogenesis of Diseases.” European Journal of Biology 0, no. 0: -. https://doi.org/10.26650/EurJBiol.2025.1464094


Chicago: Humanities Style

Soni, Yachna, and Somya Sharma and Anjali Chaudhary and Kanika Chaturvedi and Jasmeet Singh and Sainsh Sharma and Jayant Maini and Kapila Kumar. The Myriad Role of Human Endogenous Retroviruses in the Pathogenesis of Diseases.” European Journal of Biology 0, no. 0 (Jun. 2025): -. https://doi.org/10.26650/EurJBiol.2025.1464094


Harvard: Australian Style

Soni, Y & Sharma, S & Chaudhary, A & Chaturvedi, K & Singh, J & Sharma, S & Maini, J & Kumar, K 2019, 'The Myriad Role of Human Endogenous Retroviruses in the Pathogenesis of Diseases', European Journal of Biology, vol. 0, no. 0, pp. -, viewed 4 Jun. 2025, https://doi.org/10.26650/EurJBiol.2025.1464094


Harvard: Author-Date Style

Soni, Y. and Sharma, S. and Chaudhary, A. and Chaturvedi, K. and Singh, J. and Sharma, S. and Maini, J. and Kumar, K. (2019) ‘The Myriad Role of Human Endogenous Retroviruses in the Pathogenesis of Diseases’, European Journal of Biology, 0(0), pp. -. https://doi.org/10.26650/EurJBiol.2025.1464094 (4 Jun. 2025).


MLA

Soni, Yachna, and Somya Sharma and Anjali Chaudhary and Kanika Chaturvedi and Jasmeet Singh and Sainsh Sharma and Jayant Maini and Kapila Kumar. The Myriad Role of Human Endogenous Retroviruses in the Pathogenesis of Diseases.” European Journal of Biology, vol. 0, no. 0, 2019, pp. -. [Database Container], https://doi.org/10.26650/EurJBiol.2025.1464094


Vancouver

Soni Y, Sharma S, Chaudhary A, Chaturvedi K, Singh J, Sharma S, Maini J, Kumar K. The Myriad Role of Human Endogenous Retroviruses in the Pathogenesis of Diseases. European Journal of Biology [Internet]. 4 Jun. 2025 [cited 4 Jun. 2025];0(0):-. Available from: https://doi.org/10.26650/EurJBiol.2025.1464094 doi: 10.26650/EurJBiol.2025.1464094


ISNAD

Soni, Yachna - Sharma, Somya - Chaudhary, Anjali - Chaturvedi, Kanika - Singh, Jasmeet - Sharma, Sainsh - Maini, Jayant - Kumar, Kapila. The Myriad Role of Human Endogenous Retroviruses in the Pathogenesis of Diseases”. European Journal of Biology 0/0 (Jun. 2025): -. https://doi.org/10.26650/EurJBiol.2025.1464094



TIMELINE


Submitted10.04.2024
Accepted27.01.2025
Published Online19.03.2025

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE



Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.