Antioxidative Effects of Mash Beans Depending on Gender and High Fat Intake in a Model Organism
Eda Güneş, Gülsüm Rabia ŞahinObjective: In the study, the aim was to to determine the effect of Mash bean, an antioxidant source, against oxidative stress due to gender and high fat intake. Materials and Methods: For this purpose, local and commercial Mash was added to the fatty and non-fatty diet of the model organism (Drosophila melanogaster) which were let to grow. Malondialdehyde and glutathione S-transferase (GST) activities were determined in adult females and males. Results: According to the results, it was determined that Mash bean increased the GST activity of the insect. Feeding with non-commercial mash bean (NC-MB) and high-fat diet decreased lipid peroxidation (LPO) in females, whereas commercial mash bean (C-MB) had opposite effects. Conclusion: It was concluded that the NC-MB seeds were more successful in preventing LPO than C-MB. In our study, the nutrition of male individuals with a fat diet or a non-fat diet did not change the amount of LPO.
PDF Görünüm
Referanslar
- 1. Yılmaz İ. Some Food Containing Antioxidants and Oxidatif Stress. J Turgut Ozal Med Cent 2010; 17: 143-53. google scholar
- 2. Smith S, Paladino A. Eating clean and green? Investigating consumer motivations towards the purchase of organic food. AMJ 2010; 18: 93-104. google scholar
- 3. Heinrichsen ET, Haddad GG. Role of high-fat diet in stress response of Drosophila. PloS one 2012; 7: e42587. google scholar
- 4. Bahadorani S, Hilliker AJ. Cocoa confers life span extension in Drosophila melanogaster. Nutr Res 2008; 28: 377-82. google scholar
- 5. Heinrichsen ET, Zhang H, Robinson JE, Ngo J, Diop S, Bodmer R, et al. Metabolic and transcriptional response to a high-fat diet in Drosophila melanogaster. Mol Metab 2014; 3: 42-54. google scholar
- 6. Gunes E. Drosophila in food and nutrition studies. Ksü Doğa Bil Derg 2016; 19: 236-43. google scholar
- 7. Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Lee WJ, et al. An antioxidant system required for host protection against gut infection in Drosophila. Dev cell 2005; 8: 125-32. google scholar
- 8. Casali A, Batlle E. Intestinal stem cells in mammals and Drosophila. Cell Stem 4: 124-7. google scholar
- 9. Zhao HW, Haddad GG. Hypoxic and oxidative stress resistance in Drosophila melanogaster. Placenta 2011; 32: 104-8. google scholar
- 10. Padmanabha D, Baker KD. Drosophila gains traction as a repurposed tool to investigate metabolism. Trends Endocrinol Metab 2014; 25: 518-27. google scholar
- 11. Demir E. The Use of Drosophila melanogaster (fruit fly) as an In Vivo Model Organism in the Toxicity and Genotoxicity Studies of Nanomaterials. Türk Bilimsel Derlemeler Derg 2016; 9: 1-11. google scholar
- 12. Ataş H, Hacınecipoğlu F, Gönül M, Öztürk Y, Kavutçu M. Clinical Value of Antioxidant Enzymes and Oxidative Biomarkers in Psoriasis. Okmeydanı Med J 2017; 33: 270-80. google scholar
- 13. Zhang Y, Shen T, Liu SW, Zhao J, Chen W, Wang H. Effect of hawthorn on Drosophila melanogaster antioxidant-related gene expression. Trop J Pharm Res 2014; 13: 353-7. google scholar
- 14. Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition 2002; 18: 872-9. google scholar
- 15. Vijayakumar RS, Surya D, Nalini N. Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress. Redox Rep 2004; 9: 105-10. google scholar
- 16. Çaylak E. Hayvan ve bitkilerde oksidatif stres ve antioksidanlar. Med Res J 2011; 9: 73-83. google scholar
- 17. Özcan O, Erdal H, Çakırca G, Yönden Z. Oxidative stress and its impacts on intracellular lipids, proteins and DNA. J Clin Exp Invest 2015; 6: 331-6. google scholar
- 18. Tu CPD, Akgül B. Drosophila glutathione S transferases. Methods Enzymol 2005; 401: 204-26. google scholar
- 19. Xu BJ, Chang SKC. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 2007; 72: 159166. google scholar
- 20. Amarowicz R, Pegg RB. Legumes as a source of natural antioxidants. Euro Fed Lipid 2008; 110: 865-78. google scholar
- 21. Silva-Cristobal L, Osorio-Díaz P, Tovar J, Bello-Pérez LA. Chemical composition, carbohydrate digestibility, and antioxidant capacity of cooked black bean, chickpea, and lentil Mexican varieties Composición química, digestibilidad de carbohidratos, y capacidad antioxidante de variedades mexicanas cocidas de frijol negro, garbanzo, y lenteja. CYTA-J Food 2010; 8: 7-14. google scholar
- 22. Djordjevic TM, Šiler-Marinkovic SS, Dimitrijevic-Brankovic SI. Antioxidant activity and total phenolic content in some cereals and legumes. Int J Food Prop 2011; 14: 175-84. google scholar
- 23. Sasipriya G, Siddhuraju P. Effect of different processing methods on antioxidant activity of underutilized legumes, Entada scandens seed kernel and Canavalia gladiata seeds. Food Chem Toxicol 2012; 50: 2864-72. google scholar
- 24. Li X, Gao P, Zhang C, Wu T, Xu Y, Liu D. Reduced bioavailability of cyclosporine a in rats by mung bean seed coat extract. Braz J Pharm Sci 2014; 50: 591-7. google scholar
- 25. Zhao Y, Du SK, Wang H, Cai M. In vitro antioxidant activity of extracts from common legumes. Food Chem 2014; 152: 462-6. google scholar
- 26. Cao D, Li H, Yi J, Zhang J, Che H, Cao J, Jiang W, et al. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PloS one 2011; 6: e21071. google scholar
- 27. Kurniadi M, Poeloengasih CD, Frediansyah A, Susanto A. Folate content of mung bean flour prepared by various heat-treatments. Procedia Food Sci 2015; 3: 69-73. google scholar
- 28. Lin CC, Wu SJ, Wang JS, Yang JJ, Chang C. H. Evaluation of the antioxidant activity of legumes. Pharma Biol 2001; 39: 300-4. google scholar
- 29. Koç Y, Gülel A. Effects of photoperiod and the natural food quality on the preadult developmental time, adult longevity, fecundity and sex-ratio of Drosophila melanogaster meigen, 1830. OMU J Fac Agric 2006; 21: 204-12. google scholar
- 30. Sun X, Seeberger J, Alberico T, Wang C, Wheeler CT, Schauss AG, Zou S. Açai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol 2010; 45: 243-51. google scholar
- 31. Güneş E, Şahin GR. An Invıvo Study On The Use Of Local Phaseolus Shoots In Food. Acta Bio Turcica 2018; 31: 146-51. google scholar
- 32. Liyanage R, Kiramage C, Visvanathan R, Jayathilake C, Weththasinghe P, Bangamuwage R, Vidanarachchi J, et al. Hypolipidemic and hypoglycemic potential of raw, boiled, and sprouted mung beans (Vigna radiata L. Wilczek) in rats. J Food Biochem 2018; 42: e12457. google scholar
- 33. Taşkın V, Küçükakyüz K, Arslan T, Çö B, Taşkın BG. The biochemical basis of insecticide resistance and determination of esterase enzyme patterns by using PAGE in field collected populations of Drosophila melanogaster from Muğla province of Turkey. J Mol Cell Biol 2007; 6: 31-40. google scholar
- 34. Jain SK, Levine SN. Elevated lipid peroxidation and vitamin E-quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free Radical Bio Med 1995; 18: 337-41. google scholar
- 35. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249: 7130-9. google scholar
- 36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-75. google scholar
- 37. Kotancılar HG, Gerçekaslan KE, Karaoğlu MM, Boz H. Besinsel lif kaynağı olarak enzime dirençli nişasta. Ata Uni J Fac Agric 2010; 40: 103-7. google scholar
- 38. Shi Z, Yao Y, Zhu Y, Ren G. Nutritional composition and antioxidant activity of twenty mung bean cultivars in China. Crop J 2016; 4: 398-406. google scholar
- 39. Ye XY, Ng TB. Mungin, a novel cyclophilin-like antifungal protein from the mung bean. Biochem Biophys Res Commun 2000; 273: 1111-5. google scholar
- 40. Randhir R, Lin YT, Shetty K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem 2004; 39: 637-46. google scholar
- 41. Solanki YB, Jain SM. Immunostimolatory activities of Vigna mungo L. extract in male Sprague–Dawley rats. J Immunotoxicol 2010; 7: 213-8. google scholar
- 42. Zhang X, Shang P, Qin F, Zhou Q, Gao B, Huang H, Yu LL, et al. Chemical composition and antioxidative and anti-inflammatory properties of ten commercial mung bean samples. LWT-Food Sci Technol 2013; 54: 171-8. google scholar
- 43. Tang D, Dong Y, Ren H, Li L, He C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Cent J 2014; 8: 4. google scholar
- 44. Dahiya PK, Linnemann AR, Van Boekel MAJS, Khetarpaul N, Grewal RB, Nout MJR. Mung bean: Technological and nutritional potential. Crit Rev Food Sci Nutr 2015; 55: 670-88. google scholar
- 45. Luo J, Cai W, Wu T, Xu B. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem 2016; 201: 350-60. google scholar
- 46. Nakatani A, Li X, Miyamoto J, Igarashi M, Watanabe H, Sutou A, Inoue H, et al. Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochem Biophys Res Commun 2018; 501: 955-61. google scholar
- 47. Nitin M, Ifthekar SQ, Mumtaz M. Evaluation of hepatoprotective and nephroprotective activity of aqueous extract of Vigna mungo (Linn.) Hepper on rifampicin-induced toxicity in albino rats. Int J Res Health Allied Sci 2012; 1: 85. google scholar
- 48. Liu T, Yu XH, Gao EZ, Liu XN, Sun LJ, Li HL, Yu ZG, et al. Hepatoprotective effect of active constituents isolated from mung beans (Phaseolus radiatus L.) in an alcohol‐induced liver injury mouse model. J Food Biochem 2014; 38: 453-9. google scholar
- 49. Tachibana N, Wanezaki S, Nagata M, Motoyama T, Kohno M, Kitagawa S. Intake of mung bean protein isolate reduces plasma triglyceride level in rats. FFHD 2013; 3: 365-76. google scholar
- 50. Bai Y, Chang J, Xu Y, Cheng D, Liu H, Zhao Y, Yu Z. Antioxidant and myocardial preservation activities of natural phytochemicals from mung bean (Vigna radiata L.) seeds. J Agric Food Chem 2016; 64: 4648-55. google scholar
- 51. Pekşen E, Artık C. Antibesinsel maddeler ve yemeklik tane baklagillerin besleyici değerleri. OMU J Fac Agric 2005; 20: 110-20. google scholar
- 52. Rajagopal V, Pushpan CK, Antony H. Comparative effect of horse gram and black gram on inflammatory mediators and antioxidant status. TFDA 2017; 25: 845-53. google scholar
- 53. Girish TK, Vasudevaraju P, Rao UJP. Protection of DNA and erythrocytes from free radical induced oxidative damage by black gram (Vigna mungo L.) husk extract. Food Chem Toxicol 2012; 50: 1690-6. google scholar
- 54. Peng X, Zheng Z, Cheng KW, Shan F, Ren GX, Chen F, Wang M. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem 2008; 106: 475-81. google scholar
- 55. Yang YAO, Cheng XZ, Ren GX. Contents of D-chiro-Inositol, vitexin, and isovitexin in various varieties of mung bean and its products. Agr Sci China 2011; 10: 1710-5. google scholar
- 56. Kim JH, Lee BC, Kim JH, Sim GS, Lee DH, Lee KE, Pyo HB, et al. The isolation and antioxidative effects of vitexin fromAcer palmatum. Arch Pharmacal Res 2005; 28: 195. google scholar
- 57. Le Goff G, Hilliou F, Siegfried BD, Boundy S, Wajnberg E, Sofer L, Feyereisen R. Xenobiotic response in Drosophila melanogaster: sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol 2006; 36: 674-82. google scholar
- 58. Wang N, Hatcher DW, Tyler RT, Toews R, Gawalko EJ. Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Res Int 2010; 43: 589-94. google scholar
- 59. Chandrasiri SD, Liyanage R, Vidanarachchi JK, Weththasinghe P, Jayawardana BC. Does processing have a considerable effect on the nutritional and functional properties of Mung bean (Vigna radiata)? Procedia Food Sci 2016; 6: 352-5. google scholar
- 60. Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 1999; 69: 30-42. google scholar
- 61. Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr 2011; 3: 17. google scholar
- 62. Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, Diop S, Oldham S, et al. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell metab 2010; 12: 533-44. google scholar
Atıflar
Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın
DIŞA AKTAR
APA
Güneş, E., & Şahin, G.R. (2020). Antioxidative Effects of Mash Beans Depending on Gender and High Fat Intake in a Model Organism. European Journal of Biology, 79(1), 29-35. https://doi.org/10.26650/EurJBiol.2020.0032
AMA
Güneş E, Şahin G R. Antioxidative Effects of Mash Beans Depending on Gender and High Fat Intake in a Model Organism. European Journal of Biology. 2020;79(1):29-35. https://doi.org/10.26650/EurJBiol.2020.0032
ABNT
Güneş, E.; Şahin, G.R. Antioxidative Effects of Mash Beans Depending on Gender and High Fat Intake in a Model Organism. European Journal of Biology, [Publisher Location], v. 79, n. 1, p. 29-35, 2020.
Chicago: Author-Date Style
Güneş, Eda, and Gülsüm Rabia Şahin. 2020. “Antioxidative Effects of Mash Beans Depending on Gender and High Fat Intake in a Model Organism.” European Journal of Biology 79, no. 1: 29-35. https://doi.org/10.26650/EurJBiol.2020.0032
Chicago: Humanities Style
Güneş, Eda, and Gülsüm Rabia Şahin. “Antioxidative Effects of Mash Beans Depending on Gender and High Fat Intake in a Model Organism.” European Journal of Biology 79, no. 1 (Nov. 2024): 29-35. https://doi.org/10.26650/EurJBiol.2020.0032
Harvard: Australian Style
Güneş, E & Şahin, GR 2020, 'Antioxidative Effects of Mash Beans Depending on Gender and High Fat Intake in a Model Organism', European Journal of Biology, vol. 79, no. 1, pp. 29-35, viewed 25 Nov. 2024, https://doi.org/10.26650/EurJBiol.2020.0032
Harvard: Author-Date Style
Güneş, E. and Şahin, G.R. (2020) ‘Antioxidative Effects of Mash Beans Depending on Gender and High Fat Intake in a Model Organism’, European Journal of Biology, 79(1), pp. 29-35. https://doi.org/10.26650/EurJBiol.2020.0032 (25 Nov. 2024).
MLA
Güneş, Eda, and Gülsüm Rabia Şahin. “Antioxidative Effects of Mash Beans Depending on Gender and High Fat Intake in a Model Organism.” European Journal of Biology, vol. 79, no. 1, 2020, pp. 29-35. [Database Container], https://doi.org/10.26650/EurJBiol.2020.0032
Vancouver
Güneş E, Şahin GR. Antioxidative Effects of Mash Beans Depending on Gender and High Fat Intake in a Model Organism. European Journal of Biology [Internet]. 25 Nov. 2024 [cited 25 Nov. 2024];79(1):29-35. Available from: https://doi.org/10.26650/EurJBiol.2020.0032 doi: 10.26650/EurJBiol.2020.0032
ISNAD
Güneş, Eda - Şahin, GülsümRabia. “Antioxidative Effects of Mash Beans Depending on Gender and High Fat Intake in a Model Organism”. European Journal of Biology 79/1 (Nov. 2024): 29-35. https://doi.org/10.26650/EurJBiol.2020.0032