The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation
Objective: Rosacea is a chronic inflammatory skin disorder in which kallikrein-5 (KLK-5) plays a crucial role in disease progression. Targeting KLK-5 inhibition is a promising therapeutic strategy. Regarding rosacea's complex mechanisms and pathophysiology, KLK-5 plays a key role in the immune dysregulation pathway. The pathophysiology of rosacea may begin with an aberrant innate immune response, marked by overexpressed and over-activated KLK-5, which increases the expression of Toll-like Receptor 2 and MMP-9. The cleavage of larger precursor peptides into LL-37 leads to inflammation.
Materials and Methods: This study investigated the major phytochemicals of Salvia miltiorrhiza as potential KLK-5 inhibitors through molecular docking, ADME-Tox analysis, and molecular dynamics (MD) simulations. Docking studies assessed the binding interactions of S. miltiorrhiza phytochemicals with KLK-5 (PDB ID: 6QFE), comparing them to a native ligand (GSK144) and the clinically used azelaic acid.
Results: Azelaic acid exhibited the weakest binding affinity, whereas danshensu, tanshinone I, and tanshinone IIA demonstrated stronger interactions with KLK-5. The ADME-Tox analysis identified danshensu as the most promising candidate owing to its favorable pharmacokinetic and toxicity profiles. MD simulations further confirmed the stability of the danshensu-KLK-5 complex, showing minimal structural fluctuations and supporting its inhibitory potential.
Conclusion: These findings indicate that danshensu is a promising candidate for KLK-5 inhibition in rosacea, suggesting the need for further studies to validate its therapeutic potential.
PDF Görünüm
Referanslar
- Gether L, Overgaard LK, Egeberg A, Thyssen JP. Incidence and prevalence of rosacea: A systematic review and meta-analysis. Br J Dermatol. 2018;179(2):282-289. google scholar
- Cristina Diniz Silva A, Ben Fadhel S. Ethnicity versus climate: The impacts of genetics and environment on rosacea epidemiology and pathogenesis. Arch Clin Exp Dermatol. 2020;2(1):109. google scholar
- Holmes AD, Steinhoff M. Integrative concepts of rosacea pathophysiology, clinical presentation and new therapeutics. Exp Dermatol. 2017;26(8):659-667. google scholar
- Rodrigues-Braz D, Zhao M, Yesilirmak N, Aractingi S, Behar-Cohen F, Bourges JL. Cutaneous and ocular rosacea: Common and specific physiopathogenic mechanisms and study models. Mol Vis. 2021;27:323-353. google scholar
- Daou H, Paradiso M, Hennessy K, Seminario-Vidal L. Rosacea and the microbiome: A systematic review. Dermatol Ther (Heidelb). 2021;11(1). doi:10.1007/s13555-020-00460-1 google scholar
- Coda AB, Hata T, Miller J, et al. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel. J Am Acad Dermatol. 2013;69(4):570-577. google scholar
- Chen C, Wang P, Zhang L, et al. Exploring the pathogenesis and mechanism-targeted treatments of rosacea: Previous understanding and updates. Biomedicines. 2023;11(8):2153. doi:10.3390/biomedicines11082153 google scholar
- Zhang L, Wu WKK, Gallo RL, et al. Critical role of antimicrobial peptide cathelicidin for controlling Helicobacter pylori survival and infection. J Immunol. 2016;196(4):1799-1809. google scholar
- Steinhoff M, Buddenkotte J, Aubert J, et al. Clinical, cellular, and molecular aspects in the pathophysiology of rosacea. In: J Investig Dermatol Symp Proc. 2011;15:2-11. doi:10.1038/jidsymp.2011.7 google scholar
- Rainer BM, Kang S, Chien AL. Rosacea: Epidemiology, pathogenesis, and treatment. Dermatoendocrinol. 2017;9(1):e1361574. doi:10.1080/19381980.2017.1361574 google scholar
- Gonzalez-Hinojosa D, Jaime-Villalonga A, Aguilar-Montes G, Lammoglia-Ordiales L. Demodex and rosacea: Is there a relationship? Indian J Ophthalmol. 2018;66(1):36-38. google scholar
- van Zuuren EJ, Arents BWM, van der Linden MMD, Vermeulen S, Fedorowicz Z, Tan J. Rosacea: New concepts in classification and treatment. Am J Clin Dermatol. 2021;22(4):457-465. google scholar
- Chang ALS, Raber I, Xu J, et al. Assessment of the genetic basis of rosacea by genome-wide association study. J Invest Dermatol. 2015;135(6):1548-1555. google scholar
- Woo Y, Lim J, Cho D, Park H. Rosacea: Molecular mechanisms and management of a chronic cutaneous inflammatory condition. Int J Mol Sci. 2016;17(9):1562. doi:10.3390/ijms17091562 google scholar
- Cribier B. Rosacea under the microscope: Characteristic histological findings. J Eur Acad. Dermatol Venereol. 2013;27(11):1336-1343. google scholar
- Rosina P, Zamperetti MR, Giovannini A, Chieregato C, Girolomoni G. Videocapillaroscopic alterations in erythematotelangiectatic rosacea. J Am Acad Dermatol. 2006;54(1):100-104. google scholar
- Smith JR, Lanier VB, Braziel RM, Falkenhagen KM, White C, Rosenbaum JT. Expression of vascular endothelial growth factor and its receptors in rosacea. Br J Ophthalmol. 2007;91(2):226-229. google scholar
- Kumar V. Going, Toll-like receptors in skin inflammation and inflammatory diseases. Excli J. 2021;20:52-79. google scholar
- Portou MJ, Baker D, Abraham D, Tsui J. The innate immune system, toll-like receptors and dermal wound healing: A review. Vascul Pharmacol. 2015;71:31-36. Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(1):197-216. google scholar
- Kim JY, Kim YJ, Lim BJ, Sohn HJ, Shin D, Oh SH. Increased expression of cathelicidin by direct activation of protease-activated receptor 2: Possible implications on the pathogenesis of rosacea. Yonsei Med J. 2014;55(6):1648-1655. Yamasaki K, Gallo RL. Rosacea as a disease of cathelicidins and skin innate immunity. J Investig Dermatol Symp Proc. 2011;15(1):12-15. google scholar
- Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC. Human CAP18: A novel antimicrobial lipopolysaccharide-binding protein. Infect Immun. 1995;63(4):1291-1297. google scholar
- Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA. 1995;92(1):195-199. google scholar
- Park BW, Ha JM, Cho EB, et al. A study on vitamin d and cathelicidin status in patients with rosacea: Serum level and tissue expression. Ann Dermatol. 2018;30(2):136-142. google scholar
- Meyer-Hoffert U. Reddish, scaly, and itchy: How proteases and their inhibitors contribute to inflammatory skin diseases. Arch Immunol Ther Exp (Warsz). 2009;57(5):345-354. google scholar
- Fleischer AB. Inflammation in rosacea and acne: Implications for patient care. J Drugs Dermatol. 2011;10(6):614-620. google scholar
- Two AM, Del Rosso JQ.. Kallikrein 5-mediated inflammation in rosacea: Clinically relevant correlations with acute and chronic manifestations in rosacea and how individual treatments may provide therapeutic benefit. J Clin Aesthet Dermatol. 2014;7(1):20-25. google scholar
- Yamasaki K, Di Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13(8):975-980. google scholar
- Hikmawati D, Fakih TM, Sutedja E, Dwiyana RF, atik N, Ramadhan DSF. Pharmacophore-guided virtual screening and dynamic simulation of Kallikrein-5 inhibitor: Discovery of potential molecules for rosacea therapy. Inform Med Unlocked. 2022;28. doi:10.1016/j.imu.2022.100844 google scholar
- Li J, Yuan X, Tang Y, et al. Hydroxychloroquine is a novel therapeutic approach for rosacea. Int Immunopharmacol. 2020;79:106178. doi:10.1016/ j.intimp.2019.106178 google scholar
- Anzengruber F, Czernielewski J, Conrad C, et al. Swiss S1 guideline for the treatment of rosacea. J Eur Acad Dermatol Venereol. 2017;31(11):1775-1791. google scholar
- Amir Ali A, Vender R, Vender R. The Role of IL-17 in papulopustular rosacea and future directions. J Cutan Med Surg. 2019;23(6):635-641. google scholar
- Drago F, De Col E, Agnoletti AF, et al. The role of small intestinal bacterial overgrowth in rosacea: A 3-year follow-up. J Am Acad Dermatol. 2016;75(3):e113-e115. doi:10.1016/j.jaad.2016.01.059 google scholar
- Parodi A, Paolino S, Greco A, et al. Small intestinal bacterial overgrowth in rosacea: Clinical effectiveness of its eradication. Clin Gastroenterol Hepatol. 2008;6(7):759-764. google scholar
- Rubinchik E, Dugourd D, Algara T, Pasetka C, Friedland HD. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents. 2009;34(5):457-461. google scholar
- Salem DAB, El-shazly A, Nabih N, El-Bayoumy Y, Saleh S. Evaluation of the efficacy of oral ivermeotin in comparison with ivermectin-metronidazole combined therapy in the treatment of ocular and skin lesions of Demodex folliculorum. Int J Infect Dis. 2013;17(5):e343-e347. doi:10.1016/j.ijid.2012.11.022 google scholar
- Gerber PA, Buhren BA, Steinhoff M, Homey B. Rosacea: The cytokine and chemokine network. J Investig Dermatol Symp Proc. 2011;15(1):40-47. google scholar
- Asai Y, Tan J, Baibergenova A, et al. Canadian Clinical Practice Guidelines for Rosacea. J Cutan Med Surg. 2016;20(5):432-445. google scholar
- Del Rosso JQ, Tanghetti E, Webster G, Stein Gold L, Thiboutot D, Gallo RL. Update on the management of rosacea from the American Acne & Rosacea Society (AARS). J Clin Aesthet Dermatol. 2020;13(6 Suppl):S17-S24. google scholar
- Thiboutot D, Anderson R, Cook-Bolden F, et al. Standard management options for rosacea: The 2019 update by the National Rosacea Society Expert Committee. J Am Acad Dermatol. 2020;82(6):1501-1510. google scholar
- Chen L, Tsai TF. The role of p-blockers in dermatological treatment: A review. J Eur Acad Dermatol Venereol. 2018;32(3):363-371. google scholar
- Al Mokadem SM, Ibrahim ASM, El Sayed AM. Efficacy of topical timolol 0.5% in the treatment of acne and rosacea: A multicentric study. J Clin Aesthet Dermatol. 2020;13(3):22-27. google scholar
- Layton AM. Pharmacologic treatments for rosacea. Clin Dermatol. 2017;35(2):207-212. google scholar
- Stearns V, Slack R, Greep N, et al. Paroxetine is an effective treatment for hot flashes: Results from a prospective randomized clinical trial. J Clin Oncol. 2005;23(28):6919-6930. google scholar
- Wagner KD, Berard R, Stein MB, et al. A Multicenter, randomized, double-blind, placebo-controlled trial of paroxetine in children and adolescents with social anxiety disorder. Arch Gen Psychiatry. 2004;61(11):1153. doi:10.1001/ archpsyc.61.11.1153 google scholar
- Craige H, Cohen JB. Symptomatic treatment of idiopathic and rosacea-associated cutaneous flushing with propranolol. J Am Acad Dermatol. 2005;53(5):881-884. google scholar
- Park J, Mun J, Song M, et al. Propranolol, doxycycline and combination therapy for the treatment of rosacea. J Dermatol. 2015;42(1):64-69. google scholar
- Zhou L, Zuo Z, Chow MSS. Danshen: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol. 2005;45(12):1345-1359. google scholar
- Xu J, Wei K, Zhang G, et al. Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: A review. J Ethnopharmacol. 2018;225:18-30. google scholar
- Su CY, Ming QL, Rahman K, Han T, Qin LP. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med. 2015;13(3):163-182. google scholar
- Li X, Wang Z. Chemical composition, antimicrobial and antioxidant activities of the essential oil in leaves of Salvia miltiorrhiza Bunge. J Essent Oil Res. 2009;21(5):476-480. google scholar
- da Silva JKR, Figueiredo PLB, Byler KG, Setzer WN. Essential oils as antiviral agents. Potential of essential oils to treat sars-cov-2 infection: An in-silico investigation. Int J Mol Sci. 2020;21(10). doi:10.3390/ijms21103426 google scholar
- Wang J, Xu J, Gong X, Yang M, Zhang C, Li M. Biosynthesis, chemistry, and pharmacology of polyphenols from Chinese Salvia species: A review. Molecules. 2019;24(1):155. doi:10.3390/molecules24010155 google scholar
- Du G, Song J, Du L, et al. Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids. Adv Pharmacol. 2020:1-41. doi:10.1016/bs.apha.2019.12.004 google scholar
- Shanfa L. Compendium of plant genomes. In: Shanfa L, ed. The Salvia miltiorrhiza Genome. Vol 1. Springer Cham; 2019:XVI-192. doi:https://doi.org/10. 1007/978-3-030-24716-4 google scholar
- Wang X, Yang Y, Liu X, Gao X. Pharmacological properties of tanshinones, the natural products from Salvia miltiorrhiza. Adv Pharmacol. 2020;87:43-70. doi:10.1016/bs.apha.2019.10.001 google scholar
- Steinhoff M, Bergstresser PR. Pathophysiology of rosacea: Introduction. J Investig Dermatol. Symp Proc. 2011;15(1):1. doi:10.1038/jidsymp.2011.3 google scholar
- Wilkin JK. Rosacea. Arch Dermatol. 1994;130(3):359. doi:10.1001/archderm.1994.01690030091015 google scholar
- Jung I, Kim H, Moon S, Lee H, Kim B. Overview of Salvia miltiorrhiza as a potential therapeutic agent for various diseases: An update on efficacy and mechanisms of action. Antioxidants. 2020;9(9):857. doi:10.3390/antiox9090857 google scholar
- Liddle J, Beneton V, Benson M, et al. A potent and selective kallikrein-5 inhibitor delivers high pharmacological activity in skin from patients with Netherton syndrome. J Investig Dermatol. 2021;141(9):2272-2279. google scholar
- Walker AL, Bingham RP, Edgar EV, et al. Structure guided drug design to develop kallikrein 5 inhibitors to treat Netherton Syndrome. Bioorg Med Chem Lett. 2019;29(12):1454-1458. google scholar
- White GV, Edgar EV, Holmes DS, et al. Kallikrein 5 inhibitors identified through structure based drug design in search for a treatment for Netherton Syndrome. Bioorg Med Chem Lett. 2019;29(6):821-825. google scholar
- Guan L, Yang H, Cai Y, et al, ADMET-score - A comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm. 2019;10(1):148-157. google scholar
Atıflar
Biçimlendirilmiş bir atıfı kopyalayıp yapıştırın veya seçtiğiniz biçimde dışa aktarmak için seçeneklerden birini kullanın
DIŞA AKTAR
APA
Durmaz, S., & Ulusoy, E. (2025). The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation. European Journal of Biology, 84(1), 87-102. https://doi.org/10.26650/EurJBiol.2025.1597573
AMA
Durmaz S, Ulusoy E. The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation. European Journal of Biology. 2025;84(1):87-102. https://doi.org/10.26650/EurJBiol.2025.1597573
ABNT
Durmaz, S.; Ulusoy, E. The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation. European Journal of Biology, [Publisher Location], v. 84, n. 1, p. 87-102, 2025.
Chicago: Author-Date Style
Durmaz, Sümeyye, and Esma Ulusoy. 2025. “The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation.” European Journal of Biology 84, no. 1: 87-102. https://doi.org/10.26650/EurJBiol.2025.1597573
Chicago: Humanities Style
Durmaz, Sümeyye, and Esma Ulusoy. “The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation.” European Journal of Biology 84, no. 1 (Sep. 2025): 87-102. https://doi.org/10.26650/EurJBiol.2025.1597573
Harvard: Australian Style
Durmaz, S & Ulusoy, E 2025, 'The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation', European Journal of Biology, vol. 84, no. 1, pp. 87-102, viewed 20 Sep. 2025, https://doi.org/10.26650/EurJBiol.2025.1597573
Harvard: Author-Date Style
Durmaz, S. and Ulusoy, E. (2025) ‘The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation’, European Journal of Biology, 84(1), pp. 87-102. https://doi.org/10.26650/EurJBiol.2025.1597573 (20 Sep. 2025).
MLA
Durmaz, Sümeyye, and Esma Ulusoy. “The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation.” European Journal of Biology, vol. 84, no. 1, 2025, pp. 87-102. [Database Container], https://doi.org/10.26650/EurJBiol.2025.1597573
Vancouver
Durmaz S, Ulusoy E. The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation. European Journal of Biology [Internet]. 20 Sep. 2025 [cited 20 Sep. 2025];84(1):87-102. Available from: https://doi.org/10.26650/EurJBiol.2025.1597573 doi: 10.26650/EurJBiol.2025.1597573
ISNAD
Durmaz, Sümeyye - Ulusoy, Esma. “The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation”. European Journal of Biology 84/1 (Sep. 2025): 87-102. https://doi.org/10.26650/EurJBiol.2025.1597573