Research Article


DOI :10.26650/EurJBiol.2025.1597573   IUP :10.26650/EurJBiol.2025.1597573    Full Text (PDF)

The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation

Sümeyye DurmazEsma Ulusoy

Objective: Rosacea is a chronic inflammatory skin disorder in which kallikrein-5 (KLK-5) plays a crucial role in disease progression. Targeting KLK-5 inhibition is a promising therapeutic strategy. Regarding rosacea's complex mechanisms and pathophysiology, KLK-5 plays a key role in the immune dysregulation pathway. The pathophysiology of rosacea may begin with an aberrant innate immune response, marked by overexpressed and over-activated KLK-5, which increases the expression of Toll-like Receptor 2 and MMP-9. The cleavage of larger precursor peptides into LL-37 leads to inflammation.

Materials and Methods: This study investigated the major phytochemicals of Salvia miltiorrhiza as potential KLK-5 inhibitors through molecular docking, ADME-Tox analysis, and molecular dynamics (MD) simulations. Docking studies assessed the binding interactions of S. miltiorrhiza phytochemicals with KLK-5 (PDB ID: 6QFE), comparing them to a native ligand (GSK144) and the clinically used azelaic acid.

Results: Azelaic acid exhibited the weakest binding affinity, whereas danshensu, tanshinone I, and tanshinone IIA demonstrated stronger interactions with KLK-5. The ADME-Tox analysis identified danshensu as the most promising candidate owing to its favorable pharmacokinetic and toxicity profiles. MD simulations further confirmed the stability of the danshensu-KLK-5 complex, showing minimal structural fluctuations and supporting its inhibitory potential.

Conclusion: These findings indicate that danshensu is a promising candidate for KLK-5 inhibition in rosacea, suggesting the need for further studies to validate its therapeutic potential.


PDF View

References

  • Gether L, Overgaard LK, Egeberg A, Thyssen JP. Incidence and prevalence of rosacea: A systematic review and meta-analysis. Br J Dermatol. 2018;179(2):282-289. google scholar
  • Cristina Diniz Silva A, Ben Fadhel S. Ethnicity versus climate: The impacts of genetics and environment on rosacea epidemiology and pathogenesis. Arch Clin Exp Dermatol. 2020;2(1):109. google scholar
  • Holmes AD, Steinhoff M. Integrative concepts of rosacea pathophysiology, clinical presentation and new therapeutics. Exp Dermatol. 2017;26(8):659-667. google scholar
  • Rodrigues-Braz D, Zhao M, Yesilirmak N, Aractingi S, Behar-Cohen F, Bourges JL. Cutaneous and ocular rosacea: Common and specific physiopathogenic mechanisms and study models. Mol Vis. 2021;27:323-353. google scholar
  • Daou H, Paradiso M, Hennessy K, Seminario-Vidal L. Rosacea and the microbiome: A systematic review. Dermatol Ther (Heidelb). 2021;11(1). doi:10.1007/s13555-020-00460-1 google scholar
  • Coda AB, Hata T, Miller J, et al. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel. J Am Acad Dermatol. 2013;69(4):570-577. google scholar
  • Chen C, Wang P, Zhang L, et al. Exploring the pathogenesis and mechanism-targeted treatments of rosacea: Previous understanding and updates. Biomedicines. 2023;11(8):2153. doi:10.3390/biomedicines11082153 google scholar
  • Zhang L, Wu WKK, Gallo RL, et al. Critical role of antimicrobial peptide cathelicidin for controlling Helicobacter pylori survival and infection. J Immunol. 2016;196(4):1799-1809. google scholar
  • Steinhoff M, Buddenkotte J, Aubert J, et al. Clinical, cellular, and molecular aspects in the pathophysiology of rosacea. In: J Investig Dermatol Symp Proc. 2011;15:2-11. doi:10.1038/jidsymp.2011.7 google scholar
  • Rainer BM, Kang S, Chien AL. Rosacea: Epidemiology, pathogenesis, and treatment. Dermatoendocrinol. 2017;9(1):e1361574. doi:10.1080/19381980.2017.1361574 google scholar
  • Gonzalez-Hinojosa D, Jaime-Villalonga A, Aguilar-Montes G, Lammoglia-Ordiales L. Demodex and rosacea: Is there a relationship? Indian J Ophthalmol. 2018;66(1):36-38. google scholar
  • van Zuuren EJ, Arents BWM, van der Linden MMD, Vermeulen S, Fedorowicz Z, Tan J. Rosacea: New concepts in classification and treatment. Am J Clin Dermatol. 2021;22(4):457-465. google scholar
  • Chang ALS, Raber I, Xu J, et al. Assessment of the genetic basis of rosacea by genome-wide association study. J Invest Dermatol. 2015;135(6):1548-1555. google scholar
  • Woo Y, Lim J, Cho D, Park H. Rosacea: Molecular mechanisms and management of a chronic cutaneous inflammatory condition. Int J Mol Sci. 2016;17(9):1562. doi:10.3390/ijms17091562 google scholar
  • Cribier B. Rosacea under the microscope: Characteristic histological findings. J Eur Acad. Dermatol Venereol. 2013;27(11):1336-1343. google scholar
  • Rosina P, Zamperetti MR, Giovannini A, Chieregato C, Girolomoni G. Videocapillaroscopic alterations in erythematotelangiectatic rosacea. J Am Acad Dermatol. 2006;54(1):100-104. google scholar
  • Smith JR, Lanier VB, Braziel RM, Falkenhagen KM, White C, Rosenbaum JT. Expression of vascular endothelial growth factor and its receptors in rosacea. Br J Ophthalmol. 2007;91(2):226-229. google scholar
  • Kumar V. Going, Toll-like receptors in skin inflammation and inflammatory diseases. Excli J. 2021;20:52-79. google scholar
  • Portou MJ, Baker D, Abraham D, Tsui J. The innate immune system, toll-like receptors and dermal wound healing: A review. Vascul Pharmacol. 2015;71:31-36. Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(1):197-216. google scholar
  • Kim JY, Kim YJ, Lim BJ, Sohn HJ, Shin D, Oh SH. Increased expression of cathelicidin by direct activation of protease-activated receptor 2: Possible implications on the pathogenesis of rosacea. Yonsei Med J. 2014;55(6):1648-1655. Yamasaki K, Gallo RL. Rosacea as a disease of cathelicidins and skin innate immunity. J Investig Dermatol Symp Proc. 2011;15(1):12-15. google scholar
  • Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC. Human CAP18: A novel antimicrobial lipopolysaccharide-binding protein. Infect Immun. 1995;63(4):1291-1297. google scholar
  • Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA. 1995;92(1):195-199. google scholar
  • Park BW, Ha JM, Cho EB, et al. A study on vitamin d and cathelicidin status in patients with rosacea: Serum level and tissue expression. Ann Dermatol. 2018;30(2):136-142. google scholar
  • Meyer-Hoffert U. Reddish, scaly, and itchy: How proteases and their inhibitors contribute to inflammatory skin diseases. Arch Immunol Ther Exp (Warsz). 2009;57(5):345-354. google scholar
  • Fleischer AB. Inflammation in rosacea and acne: Implications for patient care. J Drugs Dermatol. 2011;10(6):614-620. google scholar
  • Two AM, Del Rosso JQ.. Kallikrein 5-mediated inflammation in rosacea: Clinically relevant correlations with acute and chronic manifestations in rosacea and how individual treatments may provide therapeutic benefit. J Clin Aesthet Dermatol. 2014;7(1):20-25. google scholar
  • Yamasaki K, Di Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13(8):975-980. google scholar
  • Hikmawati D, Fakih TM, Sutedja E, Dwiyana RF, atik N, Ramadhan DSF. Pharmacophore-guided virtual screening and dynamic simulation of Kallikrein-5 inhibitor: Discovery of potential molecules for rosacea therapy. Inform Med Unlocked. 2022;28. doi:10.1016/j.imu.2022.100844 google scholar
  • Li J, Yuan X, Tang Y, et al. Hydroxychloroquine is a novel therapeutic approach for rosacea. Int Immunopharmacol. 2020;79:106178. doi:10.1016/ j.intimp.2019.106178 google scholar
  • Anzengruber F, Czernielewski J, Conrad C, et al. Swiss S1 guideline for the treatment of rosacea. J Eur Acad Dermatol Venereol. 2017;31(11):1775-1791. google scholar
  • Amir Ali A, Vender R, Vender R. The Role of IL-17 in papulopustular rosacea and future directions. J Cutan Med Surg. 2019;23(6):635-641. google scholar
  • Drago F, De Col E, Agnoletti AF, et al. The role of small intestinal bacterial overgrowth in rosacea: A 3-year follow-up. J Am Acad Dermatol. 2016;75(3):e113-e115. doi:10.1016/j.jaad.2016.01.059 google scholar
  • Parodi A, Paolino S, Greco A, et al. Small intestinal bacterial overgrowth in rosacea: Clinical effectiveness of its eradication. Clin Gastroenterol Hepatol. 2008;6(7):759-764. google scholar
  • Rubinchik E, Dugourd D, Algara T, Pasetka C, Friedland HD. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents. 2009;34(5):457-461. google scholar
  • Salem DAB, El-shazly A, Nabih N, El-Bayoumy Y, Saleh S. Evaluation of the efficacy of oral ivermeotin in comparison with ivermectin-metronidazole combined therapy in the treatment of ocular and skin lesions of Demodex folliculorum. Int J Infect Dis. 2013;17(5):e343-e347. doi:10.1016/j.ijid.2012.11.022 google scholar
  • Gerber PA, Buhren BA, Steinhoff M, Homey B. Rosacea: The cytokine and chemokine network. J Investig Dermatol Symp Proc. 2011;15(1):40-47. google scholar
  • Asai Y, Tan J, Baibergenova A, et al. Canadian Clinical Practice Guidelines for Rosacea. J Cutan Med Surg. 2016;20(5):432-445. google scholar
  • Del Rosso JQ, Tanghetti E, Webster G, Stein Gold L, Thiboutot D, Gallo RL. Update on the management of rosacea from the American Acne & Rosacea Society (AARS). J Clin Aesthet Dermatol. 2020;13(6 Suppl):S17-S24. google scholar
  • Thiboutot D, Anderson R, Cook-Bolden F, et al. Standard management options for rosacea: The 2019 update by the National Rosacea Society Expert Committee. J Am Acad Dermatol. 2020;82(6):1501-1510. google scholar
  • Chen L, Tsai TF. The role of p-blockers in dermatological treatment: A review. J Eur Acad Dermatol Venereol. 2018;32(3):363-371. google scholar
  • Al Mokadem SM, Ibrahim ASM, El Sayed AM. Efficacy of topical timolol 0.5% in the treatment of acne and rosacea: A multicentric study. J Clin Aesthet Dermatol. 2020;13(3):22-27. google scholar
  • Layton AM. Pharmacologic treatments for rosacea. Clin Dermatol. 2017;35(2):207-212. google scholar
  • Stearns V, Slack R, Greep N, et al. Paroxetine is an effective treatment for hot flashes: Results from a prospective randomized clinical trial. J Clin Oncol. 2005;23(28):6919-6930. google scholar
  • Wagner KD, Berard R, Stein MB, et al. A Multicenter, randomized, double-blind, placebo-controlled trial of paroxetine in children and adolescents with social anxiety disorder. Arch Gen Psychiatry. 2004;61(11):1153. doi:10.1001/ archpsyc.61.11.1153 google scholar
  • Craige H, Cohen JB. Symptomatic treatment of idiopathic and rosacea-associated cutaneous flushing with propranolol. J Am Acad Dermatol. 2005;53(5):881-884. google scholar
  • Park J, Mun J, Song M, et al. Propranolol, doxycycline and combination therapy for the treatment of rosacea. J Dermatol. 2015;42(1):64-69. google scholar
  • Zhou L, Zuo Z, Chow MSS. Danshen: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol. 2005;45(12):1345-1359. google scholar
  • Xu J, Wei K, Zhang G, et al. Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: A review. J Ethnopharmacol. 2018;225:18-30. google scholar
  • Su CY, Ming QL, Rahman K, Han T, Qin LP. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med. 2015;13(3):163-182. google scholar
  • Li X, Wang Z. Chemical composition, antimicrobial and antioxidant activities of the essential oil in leaves of Salvia miltiorrhiza Bunge. J Essent Oil Res. 2009;21(5):476-480. google scholar
  • da Silva JKR, Figueiredo PLB, Byler KG, Setzer WN. Essential oils as antiviral agents. Potential of essential oils to treat sars-cov-2 infection: An in-silico investigation. Int J Mol Sci. 2020;21(10). doi:10.3390/ijms21103426 google scholar
  • Wang J, Xu J, Gong X, Yang M, Zhang C, Li M. Biosynthesis, chemistry, and pharmacology of polyphenols from Chinese Salvia species: A review. Molecules. 2019;24(1):155. doi:10.3390/molecules24010155 google scholar
  • Du G, Song J, Du L, et al. Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids. Adv Pharmacol. 2020:1-41. doi:10.1016/bs.apha.2019.12.004 google scholar
  • Shanfa L. Compendium of plant genomes. In: Shanfa L, ed. The Salvia miltiorrhiza Genome. Vol 1. Springer Cham; 2019:XVI-192. doi:https://doi.org/10. 1007/978-3-030-24716-4 google scholar
  • Wang X, Yang Y, Liu X, Gao X. Pharmacological properties of tanshinones, the natural products from Salvia miltiorrhiza. Adv Pharmacol. 2020;87:43-70. doi:10.1016/bs.apha.2019.10.001 google scholar
  • Steinhoff M, Bergstresser PR. Pathophysiology of rosacea: Introduction. J Investig Dermatol. Symp Proc. 2011;15(1):1. doi:10.1038/jidsymp.2011.3 google scholar
  • Wilkin JK. Rosacea. Arch Dermatol. 1994;130(3):359. doi:10.1001/archderm.1994.01690030091015 google scholar
  • Jung I, Kim H, Moon S, Lee H, Kim B. Overview of Salvia miltiorrhiza as a potential therapeutic agent for various diseases: An update on efficacy and mechanisms of action. Antioxidants. 2020;9(9):857. doi:10.3390/antiox9090857 google scholar
  • Liddle J, Beneton V, Benson M, et al. A potent and selective kallikrein-5 inhibitor delivers high pharmacological activity in skin from patients with Netherton syndrome. J Investig Dermatol. 2021;141(9):2272-2279. google scholar
  • Walker AL, Bingham RP, Edgar EV, et al. Structure guided drug design to develop kallikrein 5 inhibitors to treat Netherton Syndrome. Bioorg Med Chem Lett. 2019;29(12):1454-1458. google scholar
  • White GV, Edgar EV, Holmes DS, et al. Kallikrein 5 inhibitors identified through structure based drug design in search for a treatment for Netherton Syndrome. Bioorg Med Chem Lett. 2019;29(6):821-825. google scholar
  • Guan L, Yang H, Cai Y, et al, ADMET-score - A comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm. 2019;10(1):148-157. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Durmaz, S., & Ulusoy, E. (2025). The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation. European Journal of Biology, 84(1), 87-102. https://doi.org/10.26650/EurJBiol.2025.1597573


AMA

Durmaz S, Ulusoy E. The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation. European Journal of Biology. 2025;84(1):87-102. https://doi.org/10.26650/EurJBiol.2025.1597573


ABNT

Durmaz, S.; Ulusoy, E. The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation. European Journal of Biology, [Publisher Location], v. 84, n. 1, p. 87-102, 2025.


Chicago: Author-Date Style

Durmaz, Sümeyye, and Esma Ulusoy. 2025. “The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation.” European Journal of Biology 84, no. 1: 87-102. https://doi.org/10.26650/EurJBiol.2025.1597573


Chicago: Humanities Style

Durmaz, Sümeyye, and Esma Ulusoy. The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation.” European Journal of Biology 84, no. 1 (Sep. 2025): 87-102. https://doi.org/10.26650/EurJBiol.2025.1597573


Harvard: Australian Style

Durmaz, S & Ulusoy, E 2025, 'The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation', European Journal of Biology, vol. 84, no. 1, pp. 87-102, viewed 20 Sep. 2025, https://doi.org/10.26650/EurJBiol.2025.1597573


Harvard: Author-Date Style

Durmaz, S. and Ulusoy, E. (2025) ‘The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation’, European Journal of Biology, 84(1), pp. 87-102. https://doi.org/10.26650/EurJBiol.2025.1597573 (20 Sep. 2025).


MLA

Durmaz, Sümeyye, and Esma Ulusoy. The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation.” European Journal of Biology, vol. 84, no. 1, 2025, pp. 87-102. [Database Container], https://doi.org/10.26650/EurJBiol.2025.1597573


Vancouver

Durmaz S, Ulusoy E. The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation. European Journal of Biology [Internet]. 20 Sep. 2025 [cited 20 Sep. 2025];84(1):87-102. Available from: https://doi.org/10.26650/EurJBiol.2025.1597573 doi: 10.26650/EurJBiol.2025.1597573


ISNAD

Durmaz, Sümeyye - Ulusoy, Esma. The Effects of the Major Phytochemicals of Salvia miltiorrhiza on the Serine Protease KLK-5 in Rosacea: In Silico Screening and Molecular Dynamics Simulation”. European Journal of Biology 84/1 (Sep. 2025): 87-102. https://doi.org/10.26650/EurJBiol.2025.1597573



TIMELINE


Submitted10.10.2024
Accepted19.04.2025
Published Online05.06.2025

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE



Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.